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Chapter 1

Introduction

“ Deep in the sea

all molecules repeat

the patterns of one another

till complex new ones are formed.

They make others like themselves

and a new dance starts.”

-From a poem by Richard Feynman

1.1 Superfluidity, Superconductivity and Cooper Pairs

The story of superconductivity and superfluidity is an old one. It dates back to the

early 20th century. However, this is one tale that never lost its freshness and charm, for,

generations of scientists have retold it, and enriched it in their own ways.

Superconductivity was discovered in 1911 when the resistance of mercury was observed

to go to zero below a critical temperature [1]. This was quite unprecedented, at least from

the classical point of view. Indeed, superconductivity is novel in the sense that it is a

quantum phenomenon that has manifestation even in the classical macroscopic world.

These resistance-less or frictionless flows are nothing but manifestations of quantum me-

chanical effects that take place at very low temperatures. To observe these fascinating

phenomena, one has to go deep down in the low temperature regime, so that the thermal

de Broglie wavelength exceeds the interparticle separation in a gas and become compa-

1
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rable or greater than it. This is precisely the reason why low temperatures are special.

People thus got excited by the idea of exploring physical systems near absolute zero,

and started working on ultracold atomic gases. Today, scientists are extensively study-

ing ultracold Bose and Fermi gases, and theories and experiments are going hand in hand.

The discovery of superconductivity was followed by another important achievement.

The superfluid phase of liquid Helium-4 was revealed in 1938 when the viscosity of the

liquid below the λ point (2.17 K) was measured [2,3]. Later, Helium-3, the fermionic He-

lium isotope, was also found to be superfluid at a much lower temperature than Helium-

4 [4].Then in the eighties, high-temperature superconductors in Copper-oxide compounds

were discovered, thus adding to the family of superconducting materials [5].

The family became even bigger when it was discovered that there are many other physical

systems that display superfluid properties such as neutron stars, excitons in semiconduc-

tors, atomic nuclei. All these systems are characterized by frictionless flow and quantized

vorticity. If the system is electrically charged, it is called a superconductor. On the other

hand, if it is charge-neutral, then it is termed as a superfluid.

One of the theories put forward to explain superfluidity and superconductivity was

that of Bose-Einstein condensation (BEC) of bosonic particles. BEC is a consequence of

the quantum statistics of bosons, which are particles with integer spin, and it results in

a macroscopic occupation of a single quantum state [6]. This state of matter was first

predicted by Albert Einstein in 1924-1925 on the basis of the new statistics introduced

by Satyendra Nath Bose. Fritz London proposed in 1938 that superfluid properties of

Helium-4 came from Bose-Einstein condensation of bosonic Helium-4 atoms.

The complete microscopic theory of superconductivity was proposed in 1957 by Bardeen,

Cooper and Schrieffer, which is known as the BCS theory. This was based on the sugges-

tion by Cooper in 1956 that a pair of fermions in the presence of a filled Fermi sea will

form a bound pair in the presence of an arbitrarily small attractive interaction [7]. The

result predicted the formation of a minimum excitation energy, or energy gap, in the con-

ductor below a critical temperature Tc. Many properties of conventional superconductors
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could be understood as consequences of this energy gap, and the BCS picture was hailed

as a successful theory of superconductivity.

In a system of charge-neutral uldracold atom gas, the relevant property is not super-

conductivity, but superfluidity. The first insight into the theory of superfluidity came

from F. London, Lev Landau, V. L. Ginzburg and R. P. Feynman [8, 9]. However, to

capture the the microscopic details of superfluid transitions, one has to take resort of the

BCS theory. For example, although phenomenologies of the superfluid states of Helium-4

and Helium-3 are very similar, the actual mechanisms are not the same. This is reflected

in the fact that superfluidity occurs in liquid Helium-4 at much higher temperatures than

the transition temperature of Helium-3. Since Helium-4 atoms are bosons, their super-

fluidity can be regarded as a consequence of Bose-Einstein condensation in an interacting

system. On the other hand, Helium-3 atoms are fermions, and the superfluid transition

in this system is best described by formation of Cooper pairs, as in the BCS theory of

superconductivity [10,11].

1.2 Bose Einstein Condensation

In the last section we used the term ‘Bose Einstein Condensation’. In a nutshell, a

Bose-Einstein condensate is a state of matter of a dilute gas of weakly interacting bosons

trapped in an external potential and cooled to temperatures of the order of nano or pi-

cokelvin. Under such conditions, a large fraction of the bosons occupy the lowermost

quantum state of the external potential. At that point quantum effects become apparent

even on a macroscopic scale, and the condensate can be described quite successfully by a

mean field theory.

As already mentioned, Bose Einstein Condensation was predicted by Einstein in 1924

on the basis of ideas given by Satyendra Nath Bose on photons. Its consequence was that

if a system of particles obey the Bose counting system, i.e., the Bose statistics, and if

the total number of particles is conserved, there should be a temperature below which a

finite fraction of the particles would condense into the same state [6]. Einstein’s original

prediction was for non-interacting systems. Later, when superfluidity in Helium-4 was
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observed below the λ point, Fritz London suggested that although the system is strongly

interacting, it is actually Bose Einstein Condensation which has taken place in the system.

It is the emergence of BEC which is responsible for the superfluid properties [12].

Amongst the scientific community, the interest in the theory of Bose Einstein Conden-

sation was rekindled after its experimental realization. The first gaseous condensate was

achieved by Eric Cornell and Carl Wieman in 1995 at the University of Colorado at Boul-

der NIST-JILA lab.They used a gas of Rubidium atoms for the experiment and cooled it

to 170 nanokelvin (nK) (1.7X10−7 K). About four months later, the MIT group led by

Wolfgang Ketterle [13] created a condensate of 23Na. Ketterle’s condensate had about a

hundred times more atoms. His experiment yielded several significant results including

the observation of quantum mechanical interference between two different condensates.

For their achievements Cornell, Wieman, and Wolfgang Ketterle received the 2001 Nobel

Prize in Physics.

More experiments followed. A group led by Randall Hulet at Rice University created

a condensate of lithium atoms only one month after the JILA work [14]. The novelty with

this experiment was that unlike Sodium or Rubidium, Lithium has attractive interactions

which causes the condensate to be unstable. Thus it would collapse for most of the atoms.

Hulet and co-workers stabilized the condensate in a subsequent experiment by applying

quantum pressure from trap confinement for up to about 1000 atoms.

One of the most noteworthy features of these trapped Bose gases is that they are

inhomogeneous and finite-sized systems, the number of atoms ranging typically from a

few thousands to several millions. In typical BEC experiments the atoms are confined

in magnetic traps and cooled down to extremely low temperatures, of the order of nano

or picokelvins. The first evidence for condensation can be captured by time of flight

measurements. The atoms are left to expand by switching off the confining trap and then

imaged with optical methods. A sharp peak in the velocity distribution is then observed

below a certain critical temperature, which is counted as a clear signature of BEC.

In most cases, the confining traps can be approximated by harmonic potentials. The
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trapping frequency, ωho, provides also a characteristic length scale for the system, aho =

[h̄/mωho]
1/2 [12], of the order of a few microns in the available samples. Density variations

occur on this scale. This marks a sharp contrast to other systems, like for instance

superfluid helium, where the effects of inhomogeneity take place on a microscopic scale

fixed by the interatomic distance. In the case of 87Rb and , 23Na the size of the system

is enlarged as an effect of repulsive two-body forces and the trapped gases can become

almost macroscopic objects, directly measurable with optical methods.

The initial experiments with alkali BEC could be perfectly described by existing the-

ories. However, the progress in experimental techniques became so fast, that soon they

started posing new questions to the theorists as well. Moreover, recent work in the field

of BEC became relevant for the outstanding theoretical questions not only in atomic

physics, but also in condensed matter physics. For example, experiments achieved BEC

with much stronger interatomic interactions than typical alkali gases, and that influenced

the studies of all strongly correlated systems. furthermore, these interactions could even

be tuned externally by applying magnetic fields [15, 16]. Another breakthrough came

when phase transition to the highly-correlated Mott insulator state was observed through

studies of quantum gases in optical lattice potentials [17]. All these opened up new vistas

for BEC-studies in particular, and cold atom physics in general.

1.3 Cold Fermions

The achievement of Bose-Einstein-Condensation (BEC) in trapped, dilute, weakly inter-

acting atomic gases [13, 14] started a whole new era of atomic physics. Over the past

decade, the quest for the demonstration of BEC has redefined itself, and discovered new

exciting challenges. The natural extension of this work was the search for quantum de-

generacy in Fermions, particles with half-integer spins.

In practice, fermions did not lag much behind bosons when it comes to experimental

considerations involving their cooling. After the first experimental report on cooling a

dilute Fermi gas to temperatures where quantum statistics are already pronounced, by

DeMarco and Jin [18], this field became even more popular. Soon it started attracting

large interest both from theoretical and experimental sides.
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At the same time as the creation of the first strongly interacting Bose gases, people

started applying the techniques used to create alkali BECs to the other class of quantum

particles, fermions. To create an ultracold Fermi gas, experimenters applied the same

cooling techniques as those used to obtain BEC, but instead of the bosonic atom, such as
87Rb or 23Na, they used its fermionic counterpart. The two such stable alkali atoms are
40K and 6Li. However, there was a problem dealing with fermions. As a consequence of

the quantum statistics of fermions, the s-wave collisions required for standard evaporative

cooling method could not occur at ultracold temperatures in a gas of identical fermions.

The solution to this problem was to introduce a second particle to ensure the evaporative

cooling, either another hyperfine state of that particular fermionic atom or an entirely

different species. The first fermionic candidate which successfully entered the quantum

degenerate regime was 40K, created at JILA in 1999 [18]. Unlike Bose gas, no phase transi-

tion was observed here. But the experimental signatures clearly deviated from classically

predicted results when the Fermi gas was cooled below the Fermi temperature. More ex-

periments on Fermi systems followed, using a wide variety of cooling techniques. [19–22].

After the creation of a normal Fermi gas of atoms, the next target was to form a

superfluid out of a paired Fermi gas, keeping in mind the analogy with conventional

superconductors consisting of Cooper pairs. It was thought that just like the s-wave

pairing occurring between spin-up and spin-down electrons in superconductors, a pairing

would play the pivotal role in a two-component atomic gas with an equal Fermi energy for

each component. Such a two-component gas was realized using an equal mixture of alkali

atoms in two different hyperfine spin states. However, it was soon found out that for

typical interatomic interactions the temperatures required to reach a BCS-like state were

far too low compared to achievable temperatures at that time. Soon a method was devised.

Stoof et al. noted that the interaction between 6Li atoms was large compared to typical

values (|a| ∼ 2000a0), as well as attractive, bringing the BCS transition temperature

closer to realistic temperatures [23]. It was then recognized that by means of a type of

scattering resonance, known as a Feshbach resonance, the interaction strength could be

varied arbitrarily. By changing the magnetic field, the system can even be taken to the
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Figure 1.1: Population-imbalanced fermionic system

strong coupling regime. Popularly this is known as the BCS-BEC crossover.

1.4 Population Imbalanced Fermions

It is a well established fact that superfluidity and superconductivity in fermionic systems

arise from pairing of fermions. This the reason why these phenomena are often described

as the Bose condensations of Cooper pairs formed out of those fermions.

In fermionic systems, Cooper pairs are made of fermions of different species. For

example in superconductors they are electrons of opposite spins and opposite momenta.

For a cold atom system, they are atoms belonging to different species, or, alternatively,

belonging to two different hyperfine states of the same atom. It is obvious that the

most favorable situation for pairing is when the two species of fermions have the same

population, so that every fermion can find its partner and there is no unpaired fermion in

the ground state. The physics of pairing and resultant superfluidity under such condition

is well described by the BCS theory.

However, when the two fermion species have different densities, the physics of pairing

no more goes the BCS way. In any paired superfluid state formed under such situation,

some of the majority fermions will necessarily be unpaired. The question to be addressed

then reduces to -“How would the system accommodate these unpaired fermions? ” An

early suggestion was given by Fulde and Ferrell [24] and Larkin and Ovchinnikov [25]
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Figure 1.2: Phase separated imbalanced system

who argued that the Cooper pairs may condense into either a single finite momentum

state, or a state that is a superposition of finite-momentum states. Such states are known

collectively as the Fulde-Ferrell- Larkin-Ovchinnikov (FFLO) state.

Another example of the population-imbalanced pairing is the Sarma state, or the

breached pair phase. Sarma [26], in the early studies of superconductivity, predicted

a spatially isotropic, homogeneous and uniform state with gapless excitation modes in

the presence of a magnetic field. A similar gapless phase was discussed in the context

of population-imbalanced cold fermionic system [27, 28]. However, for weak coupling

BCS theory, this gapless breached pair state marks the maximum of the thermodynamic

potential, and thus, cannot be the stable ground state of the system. This is the well-

known Sarma instability. In the last few years, several mechanisms were put forward to

avoid this instability [29–33] . Another place where pairing between unbalanced fermion

species arises is quark and nucleon pairing in high density quark or nuclear matter, such

as in the core of a neutron star. There the origin of density imbalance is due to the

difference in the rest mass of quarks or nucleons that form the pairs; when the different

pairing species are in chemical equilibrium.
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1.5 BCS-BEC Crossover

The problem of BCS-BEC crossover is also an old one, having been studied in a variety

of contexts in the 80s and 90s [34–37], although recent experimental realization through

ultracold Fermi gases [38–40] has led to a revival of interest in the subject. The basic idea

behind this problem is simple: a system of fermions with weak attractive interaction is

known to form large overlapping Cooper pairs of zero center of mass momentum and zero

net spin. In charged systems, this leads to superconductivity, while neutral systems show

superfluid behavior. The system in this limit is well described by the BCS mean field the-

ory of superconductivity. If the strength of this fermion-fermion interaction is gradually

increased, As the attraction goes beyond a point, bound states can be formed [41–43].

If the attraction is increased much beyond this point, tightly bound bosonic molecules

with a large binding energy would appear. A many body system of these bosons would

then undergo Bose Einstein condensation (BEC) at sufficiently low temperatures. The

challenge is then to find a single theory which can describe the entire regime from the

BCS to the BEC limit .

BCS-BEC crossover was first addressed way back in 1969, in the seminal work of

Eagles [44]. Later, using a variational prescription, Leggett [34] showed that as the cou-

pling strength is increased, the superconducting BCS ground state at zero temperature

smoothly evolves into a BEC state of tightly bound molecules. Nozieres and Schmitt-
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Rink [35] and M. Randeria [36, 37] extended the analysis to a finite temperature. Since

then, various aspects of the crossover problem has been widely investigated over the years.

So the crucial point is, one needs a handle over the fermion-fermion coupling. The

interaction potential between the atoms depend on their internal states leading to a two-

channel problem. For example, when there is a spin- singlet and a spin triplet state, The

effective interaction in the triplet channel can be tuned by changing the energy of a bound

state in the singlet channel relative to the scattering states in the triplet channel with a

magnetic field. The scattering cross section in the singlet channel becomes maximal when

the bound state energy crosses the energy of the lowest scattering state in the singlet

channel. This phenomenon is called the Feshbach resonance.

In a simplified picture, a Feshbach resonance occurs when the energy of a bound state

of the interatomic potential is equal to the kinetic energy of a colliding pair of atoms.

Assuming a finite kinetic energy, such a degeneracy can occur only when the bound

state exists in a potential that has a higher threshold energy than that of the colliding

atom pair. This condition can be satisfied in ultracold gases of alkali atoms, due to the

low collision energy of the atoms and the existence of atomic hyperfine structure. Since

the different hyperfine states generally possess different spin configurations and magnetic

moments, one can sometimes tune the bound state energy into resonance with the colliding

atom energy via the different Zeeman shifts in an external magnetic field. Assuming that

both colliding atoms are in the lower hyperfine state, it may happen that an interatomic

potential associated with the upper hyperfine state supports a bound state nearby in

energy.

If two atoms begin an elastic collision in the lower channel with kinetic energy much

smaller than the hyperfine splitting, the atoms cannot have the energy to go to the

upper channel because. Thus, the upper channel is energetically “closed”, while the lower

channel is termed to be “open”.

Resonance scattering occurs when a bound state of the potential is very close to the

collision energy of the atoms. The colliding atoms then can make a transition to the

bound state and stay there for a short time before moving apart again after the collision.

An enormous change in the scattering process occurs when the two levels have exactly the
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Figure 1.4: Feshbach resonance (Figure credit: Webpage of Ketterle group, MIT)

same energy, which causes the elastic cross section and scattering length to reach infinite

values. In a Feshbach resonance, one can adjust the energy of a bound state relative to

the collision energy just by tuning the magnetic field. Even though the bound state exists

in a different interatomic potential from that of the colliding atoms, the variable bound

state energy can have an immense influence on the atom-atom scattering length.

From the coupled-channels scattering theory of Feshbach resonances, one can derive

an approximate analytic expression for the variation of the scattering length [12]

a = abg(1 − Γ

H − H0

) (1.1)

It follows that as a is negative when there is no bound state, it tends to −∞ at the onset

of the bound state and to +∞ just as the bound state stabilizes. It remains positive but

decreases in value as the interaction becomes increasingly strong. The magnitude of as is
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Figure 1.5: BCS-BEC crossover (Figure credit: Webpage of Ketterle group, MIT)

small in both the extreme BCS and BEC limits, but with opposite signs. Although the

two-body scattering length changes abruptly at the unitarity (|aS| = ∞), in the N-body

problem, superfluid properties vary smoothly through this point.

1.6 Dynamical Studies

The dynamical properties are extremely important attributes of ultracold atomic gases.

In the recent years, scientists have started to explore Fermi and Bose systems from this

perspective as well. The discovery that the interparticle interaction can be tuned via

Feshbach resonance has led to much advances in this front, and both the BCS-BEC

crossover and the dynamics of the condensate fraction were investigated.

The expansion of Bose and Fermi superfluids after the sudden release of the confining
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potential has been extensively studied by experimentalists, and the collective excitations

of these systems have been duly probed. In fact, it started with the first generation of

experiments on trapped Bose-Einstein Condensates. Once the trap potential was sud-

denly switched off, the imaging of the expanding cloud highlighted many features of the

condensate, like the bimodal structure of the Bose system at finite temperature and the

anisotropy of the expanded gas. Experiments with weakly coupled Fermi gases followed

suit and collective excitations were measured. Ultracold Li6 atoms were proved to be

excellent candidates for all these experiments because when the BCS-BEC crossover is

achieved, Li6 gas shows a good amount of stability in the molecular regime.

As for the theorists, both the equilibrium and non-equilibrium aspects of the ultracold

system dynamics have been important. Although dynamical studies were going on for a

long time addressing various quantum systems, the advancement in the experiments with

ultracold atoms rekindled the interest in this field. This is mostly because the Feshbach-

tuned experiments now enabled the scientists to have a good control over the parameters

in the quantum Hamiltonians. Thus, ultracold atom gases provided a wonderful test bed

for many-body quantum theories.

1.6.1 Quench Dynamics

The high tunability associated with ultracold atom experiments have also opened up new

avenues for studying nonequilibrium quantum dynamics of many-body systems. In these

experiments, one can change the system parameters rapidly, and study the quantum evo-

lution that follows. As a matter of fact, it is not always possible for to vary parameters

(like the magnetic field in Feshbach resonance) adiabatically throughout the experiment,

and abrupt changes in the parameter value has to be taken into account. Nonadiabatic

dynamics has been investigated for the superfluid to Mott insulator quantum phase tran-

sition, and for the BCS-BEC crossover as well.

In most of these cases where the system parameters are changed or quenched rapidly,

a standard quench picture or prescription holds. It is assumed that the system is prepared

in the ground state of an initial Hamiltonian H, and as the sudden change takes place,

a different Hamiltonian H ′ takes over. However, the change is so fast that the system
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does not even “realize” at that time that a change has taken place, and the ground state

remains unaltered., only now it evolves under the influence of the new Hamiltonian. For

all calculations, the ground state is now expanded in terms of the eigenstates of the new

Hamiltonian.

Figure 1.6: Quench mechanism

Quenches are important from the standpoint of scaling laws and universality. In

adiabatic evolutions across a critical point, a universal scaling property arises. Similarly,

if a system is quenched through a quantum phase transition, several quantities (like the

quasiparticle excitation energy, fidelity susceptibility etc.) scale in a definite fashion,

tallying with the universality of the system.

Even when there are no actual phase transitions in the system, a tuning of the pa-

rameters in the system Hamiltonian can lead to a certain “level crossing” : the system

can now either stay in the ground state or jump to the excited state. This dynamics is

usually described by the Landau-Zener process.

1.6.2 Natural Dynamics of the System

The study of the collective excitation modes of a many-body system is also very useful.

It sheds light on the system for both equilibrium and far-from-equilibrium cases. Near

equilibrium, the fluctuations in the system variable that arises due to small perturbations
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is either periodic or decaying. Since the collectives modes are stable there, a growth

cannot be present in this dynamics.

The study of the excitation modes, even in the linearized approximation, holds the key

to the understanding of many important properties of the system. S. Nascimbene et al. [45]

in their paper on collective oscillations of an imbalanced Fermi gas puts it very nicely :

“The study of the low-lying excitation modes of a complex system can be a powerful

tool for investigation of its physical properties. For instance, Earths structure has been

probed using the propagation of seismic waves in the mantle, and the ripples in space-time

propagated by gravitational waves can be used as probes of extreme cosmic phenomena.”

Ultracold atom systems are no exceptions. Measurement of low energy modes of bosonic

or fermionic systems has indeed been of much use to probe manifestations of superfluidity,

or to study vortex lattices [46,47].

1.7 About this Thesis

The work reported in this thesis is divided into four major chapters: Chapter 2-Chapter

5. The first two of them deal with static properties of ultracold atom systems, while the

last two investigate dynamic properties.

In chapter 2, we discuss the phenomenon of fermionic pairing and BCS-BEC crossover

for a population-imbalanced fermionic system in the presence of Feshbach resonance,

where the resonantly-paired fermions combine to form bosonic molecules. In addition

to the fermion-fermion coupling and the Feshbach interaction, we also take into account

the scattering of Cooper pairs by newly formed bosons near the resonance. Thus, it is

essentially the study of a three-body process.

In chapter 3, we study a population-imbalanced two-species fermionic system. There

are, as discussed earlier, suggestions of various possible superfluid states that can accom-

modate those excess fermions. We focus on one such particular state : the Sarma phase

or Breached Pair state. It had been argued earlier that this state marks the maximum of

thermodynamic potential for the weak-coupling regime, and therefore, cannot be a stable

configuration. This is termed as the Sarma instability. Here we try to address an im-

portant question in this line : if instead of only the weak-coupling BCS side we consider
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the entire BCS-BEC crossover path, can we have a region where the breached pair state

might become stable?

With chapter 4, we turn to the dynamics of superfluid systems. We focus here on

fast quench dynamics,i.e., the evolution of the system after one of the system parameter

is changed rapidly. We feel that this is really important if one tries to draw a parallel

with actual cold atom experiments. We talk about both linear quenches and periodically

driven quenches in the context of a BCS superfluid.

Chapter 5 is also about dynamical studies. This time we study the natural dynamics

of population-imbalanced ultracold Fermi systems. Our aim is to use the results obtained

from this analysis to probe monentum space structures of the imbalanced configuration.

In fact, it is extremely difficult for present-day experiments to detect the exotic phases

that appear from the imbalanced pairing, and it is almost impossible to resolve their

momentum-space structures. We believe that the study of dynamical properties can go

a long way in determining the momentum space structures of two-species fermions with

mismatched Fermi surfaces. This is the motivation behind chapter 5.

In chapter 6, we summarize all our findings, and talk about the future directions that

can emerge from our work.

So the essential questions that we have addressed in this thesis are:

• What happens to the BCS-BEC crossover picture if additional three-body interac-

tions are taken into account?

• For a population-imbalanced two-species fermionic system, how are the excess fermions

accommodated? If we consider the breached pair state as a possible candidate for

representing such a system, can we identify the conditions which make it a stable

one?

• How do the system parameters scale for a superfluid system undergoing linear

quench dynamics?

• What happens if a periodic drive is introduced in the quench Hamiltonian for the
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BCS superfluid?

• In a system of fermions capable of forming bosons via BCS-BEC crossover, what is

the nature of the fluctuations in the condensate fraction? How many frequencies of

oscillation are there?

• Can the dynamical study be used to probe the momentum-space structures of a

population-imbalanced two-species Fermi system? Can it be linked to experimental

possibilities?
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Chapter 2

BCS-BEC Crossover in the Presence of Three-body

Interactions

2.1 BCS-BEC Crossover

In the introductory part, we had briefly talked about BCS-BEC crossover. Although the

idea is an old one, [1–4], it is still very much relevant and has inspired many experimental

endeavours [5–7]. Recent experiments have successfully explored the crossover regime by

means of studying the cloud size [8], expansion energy [9], resonance condensation [5,10]

and condensed nature of the fermionic atom pairs [6,7]. From the theoretical standpoint,

the pioneering works by Eagles [11], Leggett [1], Nozieres and Schmitt-Rink [2] and M.

Randeria [3, 4] have found many successors [12–22].

2.2 Three-body Scattering Processes

Almost all the works have addressed the crossover phenomenon as a two-body scattering

problem, where the interaction between two fermions has played the pivotal role. As the

interaction between them is increased gradually, the fermion pairs form boson molecules,

and the crossover is driven by the two-body interaction only. However, as Milstein et al.

pointed out [23], it would be interesting to extend this approach to incorporate the effect

of higher order interactions in the crossover region. In fact, higher order scatterings and

nonlinear interactions are being investigated in other domains of ultracold atom physics

as well, starting from cubic interactions in BEC [24–27], to atom-dimer scattering in fermi

systems [28–30] and induced interactions in three-component Fermi gases [31]. All these

22
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studies have brought out interesting new features of the systems. BCS-BEC crossover,

too, should not be an exception.

The simplest form of higher order many-body interactions would be a three-fermion

scattering. It has been argued by Holland et al. [15] that its effect will not be a prominent

one, because in such a three-body interaction, the s-wave state is forbidden. The only

three-body scattering could come from p waves, which have very little contribution at

sufficiently low temperatures. We, too, neglect these interactions for the time being.

Instead, we shift our focus 1to a situation when, along the crossover path, some atom

pairs have formed composite molecules, while some other pairs are yet to do so (they are

still in the Cooper pair state). The newly formed bosons would scatter the pre-formed

bosons (or, Cooper pairs). It is basically a three-body scattering. This interaction should

be important near the resonance point. Each of the two-body and three-body interactions

can be either attractive or repulsive. We take a variational mean field approach, and

discuss the effect of this additional term for all the above four cases.

2.3 Model Hamiltonian and Ground State

Here we start with a two-species fermionic system. In addition to the fermion-fermion

interaction ( denoted by g1), and an additional interaction (g2) of the Feshbach variety

which couples a fermion of type a with a b fermion to form a bosonic molecule B, we

also take into account the scattering of pre-formed bosons or Cooper pairs by freshly

formed bosons. Strength of the interaction is given by g3. The system is described by the

Hamiltonian:

H =
∑

(2ν − µB)B†
0B0 +

∑

p

ǫ̃a
pa†

pap +
∑

ǫ̃b
pb†pbp − g1

∑
a†
p′b

†
−p′b−pap

+g2

∑
[B†

0apb−p + a†
pb†−pB0] + g3

∑
B†

0′a
†
p′b

†
−p′b−papB0

(2.1)

The ground state of the system is consequently given by [14,32] a product wavefunction

of the BCS ground state, and the ground state for the condensate part of the boson

1The work reported here is based on the paper “ Effects of three-body scattering processes on BCS-

BEC crossover”, Raka Dasgupta, Phys. Rev. A, 82, 063607, 2010
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subsystem.

|Ψ〉 =
∏

(Up + Vpa†
pb†−p)|0〉 ⊗ exp(−α2/2 + αB†)|0〉 (2.2)

where α =
√

NB, NB being the expectation value of the total number of bosons in the

condensed state.

2.4 Effective Coupling

From the Hamiltonian (2.1) and the ground state wave function (2.2), the ground state

energy of the system would be

E =
∑

(ǫ̃a
p + ǫ̃b

p)V 2
p + g1

∑

p,p′

UpVpUp′Vp′ + (2ν − µB)α2

+2g2α
∑

p

UpVp + g3α
2
∑

p,p′

UpVpUp′Vp′

(2.3)

Differentiating E with respect to Vp

4ǫ+
pVp + 2g1

∑

p,p′

Up′Vp′(Up − V 2
p /Up) + 2g2α(Up − V 2

p /Up)

+2α2g3

∑

p,p′

Up′Vp′(Up − V 2
p /Up) = 0

(2.4)

We assume that in the mean field framework, instead of couplings g1, g2 and g3, this

equation can be written in terms of an effective two-body coupling geff . This is in

conformity with what Mora et al. [30] found out for a confined three-body problem : that

it can be completely expressed in terms of two-body quantities. Equation (2.4) now takes

the form -

4ǫ+
pVp + 2geff

∑

p,p′

Up′Vp′(Up − V 2
p /Up) = 0 (2.5)

The exact form of geff is to be determined later. Drawing an analogy with the standard

BCS treatment, we can write −geff
∑

p UpVp = ∆, where ∆ is the gap in the excitation

spectrum [33].

Next, differentiating E with respect to α, we obtain

2α(2ν − µB) + 2g2

∑

p

UpVp + 2αg3

∑

p,p′

UpVpUp′Vp′ = 0 (2.6)



Chapter 2. BCS-BEC Crossover in the presence of three-body interactions 25

. Or,

α = −
g2

∑
p UpVp

(2ν − µB + g3

∑
p,p′ UpVpUp′Vp′)

(2.7)

Putting −geff
∑

p UpVp = ∆ as mentioned before,

α =
g2

∆
geff

(2ν − µB + g3
∆2

geff
2 )

(2.8)

Using this in equation (4), we get

geff = g1 + g3α
2 − g2

2

(2ν − µB + g3
∆2

geff
2 )

= g1 −
g2
2

(2ν − µB + g3
∆2

geff
2 )

+
g3g

2
2

∆2

geff
2

(2ν − µB + g3
∆2

geff
2 )2

(2.9)

In the BCS limit, ∆ goes as e−
1

as [1]. Therefore, as as → 0, ∆ goes to zero much faster

than geff (which is proportional to as). Hence ∆2

g2

eff

→ 0 in this limit.

We therefore have

geff = g1 −
g2
2

(2ν − µB)
(2.10)

If g1, i.e., the two-fermion coupling is attractive, then this becomes |geff | = |g1| +
g2

2

(2ν−µB)
, a result analogous to the effective coupling in a standard two-species fermionic

system, where only the fermion-fermion scattering is taken into account [16,19,32]. This

is consistent with the fact that in the extreme BCS limit, there are almost no composite

bosons at all. Therefore, the boson-fermion scattering should not have any effect on the

coupling parameter.

On the other hand, in the extreme BEC limit, ∆ goes as a
− 1

2

s [34]. Therefore, ∆2

g2

eff

≈
1

g3

eff

. Equation (2.9) thus becomes:
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geff = g1 −
g2
2

(2ν − µB + g3

geff
3 )

+
g3g

2
2

geff
3(2ν − µB + g3

geff
3 )2

= g1 −
g2
2

(2ν − µB + g3

geff
3 )

(
1 −

g3

geff
3

2ν − µB + g3

geff
3

)

= g1 −
g2
2(2ν − µB)

(2ν − µB + g3

geff
3 )2

(2.11)

This is essentially a polynomial in degree 7, its real roots being the solutions for effective

coupling.

We approximate the effective coupling in BCS side by equation (2.10) and that of the

BEC side by equation (2.11) and study the crossover for various combinations of 2-body

coupling (g1) and 3-body coupling (g3). At resonance, it is known that ∆ is proportinal

to Fermi energy only [35]. So very near resonance, we treat ∆ as a constant.

In the conventional BCS-BEC crossover picture, the two-body coupling ( and thus,

the scattering length, too) is positive in the BEC side, and it goes to ∞ at resonance. It

assumes a negative value in the BCS side, and near resonance, goes to −∞.

In order to study the effects of three-body processes, here we assign some arbitrary

values to g1, g2 and g3 ( all the couplings are scaled by the Fermi energy), and calculate

the effective two-body couplings. geff is plotted against the detuning 2ν − µB to obtain

the crossover picture. We note that even if the magnitudes of g1, g2 and g3 are changed,

the general qualitative trend of the coupling vs. detuning curve remains the same.

2.5 Crossover When Two-body Interaction is Attractive, Three-

body Interaction is Repulsive

Here we choose g1 = −1, g2 = 10 and g3 = 0.1
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Figure 2.1: Crossover paths near resonance when the two body interaction is attractive,

and the three-body one repulsive.
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Figure 2.2: A closer view of the multiple roots of Fig. 2.1 at the resonance region.
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Figure 2.3: Crossover paths for a longer detuning range when the two body interaction is

attractive, and the three-body one is repulsive.

The geff vs. 2ν −µB curve is plotted in Figs. 2.1, 2.2 and 2.3 for two different ranges.

As shown in Figs. 2.1and 2.2, when we approach 2ν = µB, i.e., the resonance condition

from the BEC side, we find there are two additional roots in addition to the geff = ∞
root. Therefore, when we move away slightly from the resonance towards the BEC region,

there are three roots : one that corresponds to geff in the absence of any g3 ( and goes

to ∞ at resonance), a negative root that goes almost linearly and reaches g1 at resonance

as evident from equation(2.11), and a positive root that also varies almost in a linear

fashion. All the three roots survive even when the system lies deeper at the BEC domain.

In the BCS side, there is a single root which is identical to the effective coupling of

the system in that region when there was no g3. It goes to −∞ at resonance.

Therefore, if starting from the BCS side, one tries to achieve the crossover, right after

crossing the 2ν = µB point, one encounters three possible paths (Fig. 2.3) – one coming

from +∞, and the other two from finite values of geff . If the system takes either of the

two lower paths, the system actually bypasses the unitarity region ( where the scattering

length diverges) in the BEC side. In such cases, although a region of unitarity will be

present in the BCS side, its BEC side counterpart would be absent.
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Figure 2.4: Crossover paths near resonance when both the two body and three-body

interactions are attractive.

2.6 Crossover When Two-body and Three-body Interactions

are Both Attractive:

Here we choose g1 = −1, g2 = 10 and −g3 = 0.1. As before, the geff vs. 2ν − µB curve is

plotted. Here also, we observe the trend to be similar to the previous case. As shown in

Figs. 2.4 2.5, we have three real roots in the BEC side and a single real root in the BCS

side.

In the BEC side, therefore, the system has the option to take any of the routes : one

of them resembles the case of g3 = 0, and unitarity regions are there at both sides of the

resonance. However, the other two branches can lead to a crossover scenario where again

the unitarity is avoided in the BEC region.
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Figure 2.5: A closer view of the multiple roots of Fig. 2.4 at the resonance region.
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Figure 2.6: Crossover paths for a longer detuning range when both the two body and

three-body interactions are attractive.

We observe from Figs.2.4 and 2.6 that that the upper two branches (including the

traditional branch that we have for g3 = 0) have a region of discontinuity, while the low-

ermost route is a continuous one.
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2.7 Crossover When Two-body and Three-body Interactions

are Both Repulsive
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Figure 2.7: Crossover paths near resonance when both the two body and three-body

interactions are repulsive.

BCS

HbL

-20 -10 0 10 20 30 40 50
-2

-1

0

1

2

2Ν-ΜB

g e
ff

Figure 2.8: A closer view of the multiple roots of Fig. 2.7 at the resonance region.
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We choose g1 = 1, g2 = 10 and g3 = 0.1. Here, as shown in Figs. 2.7 and 2.8, there

are three real roots in the BCS side, and one single root in the BEC region.

2.8 Crossover When Two-body Interaction is Repulsive, Three-

body Interaction is Attractive

Here we choose g1 = 1, g2 = 10 and g3 = −0.1.
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Figure 2.9: Crossover paths near resonance when the two body interaction is repulsive,

and the three-body one is attractive.

In this case, as seen from Figs. 2.9 and 2.10 the crossover picture closely resembles

the earlier case, i.e., there are three possible routes in the BCS side, while a single route

is available in the BEC side.
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Figure 2.10: A closer view of the multiple roots at the resonance region.

2.9 Which Path is More Favourable? Energy Considerations:

Let E be the total energy of the system minus kinetic energy of the fermions. Now,

if we compute and compare E for all three branches, the branch corresponding to the

minimum energy should be the one that the system favours. At resonance we can treat

∆ as constant. Using this, we plot E with 2ν − µB and geff (Fig. 2.11). In the BEC

side, the lowermost branch corresponds to the minimum energy. Now, since this branch is

associated with an attractive effective interaction, the BEC state should either collapse,

or be a metastable one. Here we would get the latter, as the attraction is very weak.

Thus, we have a striking property of the BCS-BEC crossover : If we start from a

stable BEC state, we can achieve the BCS domain via Feshbach resonance; but if we start

from the BCS side instead, we reach at a metastable BEC state. Thus the process is not

totally reversible.

In the BCS side, as apparent from the Fig 2.12, the branch closer to geff = 0 should

be the favoured one. But in that case, the scattering length does not go to negative

infinity, and the system cannot achieve the crossover. This is in contradiction with the

well-established theoretical and experimental results [1, 3,6, 7].
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Figure 2.11: Variation in energy in the BEC side with effective coupling and detuning

So we modify ∆ using the form of the gap for weak coupling BCS [36] :

∆0 = 2ωcexp(− 1

ρ(0)geff

) (2.12)

here ρ(0) is the density of states in the Fermi level, and ωc is the cutoff frequency for

BCS model. Thus we no longer treat the gap as a constant, and incorporate the coupling-

dependence in it. This is justified, since the upper two branches are at the weak coupling

domain, so the corresponding ∆ should follow the expression for the BCS gap. Now the

energy surface takes the form of Fig. 2.13. It shows that in the negative geff side, the

energy is less as one goes away from geff = 0. Therefore, the lowermost branch in the

BCS side in Fig. 2.13 will be the favoured one.
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Figure 2.12: Variation in energy in the BCS side with effective coupling and detuning :

gap is taken to be constant

2.10 Summary and Discussion

Here we have studied the BCS-BEC crossover in the presence of an additional three-

body interaction term : the scattering of a Cooper pair by a newly formed boson near

the resonance point. This has led to alternative crossover routes, and hence, brought

out interesting properties of the crossover phenomenon. Most noteworthy of them is the

non-reversibility of the process. If the two-body interaction is attractive (irrespective of

whether the three-body interaction is attractive or repulsive),then starting from a stable

BEC system the BCS state can be reached via Feshbach resonance, but the path cannot

be reversed : a start from the BCS side can only end up in a metastable BEC state (and

not the stable one). This, we believe is an important finding and it reconfirms the need

of more theoretical and experimental investigations along this line.

BEC-BCS crossover has been experimentally investigated so far in 6Li and 40K systems.

In most cases [6–9] the system is first prepared in the BEC state, and the magnetic field is

varied to obtain the BCS. This is completely in agreement with our results. In contrast,
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Figure 2.13: Variation in energy in the BCS side with effective coupling and detuning :

gap is coupling dependent

in the experiment by C.A. Regal et al. [5], the ultracold 40K system went through the

crossover in the opposite direction, i.e., it was a BCS-BEC crossover, and not a BEC-

BCS one. Whether the final state here is a stable BEC or a metastable one with a

weak attractive interaction (as predicted by our calculations) can be ascertained only

after a study of the long-time response of the system. Moreover, in this experiment they

first lowered the magnetic field slowly (10ms/G)−1 to bring it near resonance, and then

rapidly changed it (50µs/G)−1 to lower it further and obtain the BEC. Thus, although

the crossover from the BCS to the resonance is an adiabatic one, it is a fast quench which

takes the system from resonance to the BEC domain. So the mechanism may not have

followed the dynamics of a smooth crossover, and that could have resulted in a different

final state ( a stable BEC state, for example). An experiment which probes the crossover

starting from the BCS side, and changes the magnetic field adiabatically all through,

might clarify this point. The final BEC state should also be studied carefully for a longer

time so that the distinction between a metastable and a stable state can be easily made.
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Chapter 3

Stability of the Breached Pair State for a

Population-Imbalanced Fermionic System

In Bardeen-Cooper-Schrieffer (BCS) theory, the phenomenon of superconductivity in

fermionic systems is attributed to the formation of Cooper pairs between particles with

opposite spins and equal but opposite momenta. In ultracold atom systems, too, there is

a parallel in the form of superfluidity, where a pairing takes place between two species of

fermions. The fact that each fermion has a partner to pair with ensures that the system

is a superfluid all the way. In such a system, there is a single Fermi surface. When the

fermion-fermion interaction is tuned, and the system is taken from the weak coupling

regime to the strong coupling one, there would be a smooth crossover from a superfluid

with loosely bound Cooper pairs to the condensation of tightly bound bosonic molecules.

 ¯

Figure 3.1: Cooper pairing

However, when there is an asymmetry/ population imbalance introduced in the system,

i.e., the number of atoms belonging to the first species is not equal to the number of

atoms of the second species, the physics of pairing no longer remains the same. With

this imbalance in population, it is not possible anymore to pair all the fermions in the

BCS fashion. The problem now is to decide how the excess unpaired fermions will be

40
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accommodated in the system, and whether the system would remain a superfluid at all.

The problem with unequal population arises in many important fields of physics. It

appears in the study of superfluidity of quarks in the dense matter of the early universe,

in the form of imbalanced quark densities. In superconducting materials, the application

of an external magnetic field serves the same purpose : it creates an imbalance in the

densities of spin up and spin down electrons.

In ultracold atoms, fermionic pairing and superfluidity with mismatched Fermi surfaces

have been widely investigated in recent years. Theoretical studies have zoomed in on

thermodynamic and superfluid properties of these systems. [1–14]. Population imbalance

in cold atom systems have been realized in experiments [15–17], and the signature of

superfluidity was obtained.

A mismatch in Fermi surfaces can be easily realized in a two-species fermionic sys-

tem where the pairing species have unequal populations or different masses/ chemical

potentials. Typically, such a system would consist of two different fermionic atoms

(e.g., 6Li and 40K) or alternatively, two hyperfine states of the same atom (e.g., states

|F = 1/2,mF = 1/2〉 and |F = 1/2,mF = −1/2〉 of 6Li atoms).

Several phases have been proposed to describe the possible ground state of such a sys-

tem. The list includes the FFLO phase [18–20](pairing with non-zero centre-of-mass mo-

mentum, where the order parameter shows a spatial variation), the gapless BP (breached

pair) or interior-gap phase [1–4] (pairing with zero centre-of mass momentum: where the

order parameter is nonzero but the excitation energy becomes zero), and the inhomoge-

neous phase-separated state [8,9], where any two pure states coexist. Some of these novel

states have been discussed in the introductory chapter of this thesis.

In this chapter 1, our focus is on the homogeneous and gapless breached pair state,

also known as the Sarma state. Sarma [21], in the early theoretical studies of supercon-

ductivity, predicted a spatially isotropic, homogeneous and uniform state with gapless

excitation modes in the presence of a magnetic field. However, for weak coupling BCS

1The work reported here is based on the papers “ Stability of the breached pair state for a two-species

fermionic system in the presence of Feshbach resonance”, Raka Dasgupta, Phys. Rev. A, 80, 063623,

(2009) and “Stability of a gapless state for population-imbalanced fermionic systems”, Raka Dasgupta,

Physics Teacher (Quarterly Journal of Indian Physical Society) 51, numbers 3-4, (2009)
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theory, it was found that this gapless breached pair state marks the maximum of the

thermodynamic potential, and thus, cannot be the stable ground state of the system.

This is the well-known Sarma instability. In the last few years, several prescriptions were

put forward to avoid this instability. According to Forbes et.al. [22], a stable Sarma state

is possible in a model with finite range interaction where the momentum dependence of

the pairing gap cures the instability. It has also been proposed by a number of work-

ers [7, 20, 23, 24]that the breached pair state becomes stable in the deep BEC regime, if

the BCS-BEC crossover picture is taken into account. He et al.,in a very recent work [25]

has argued that the breached pair state can be a possible ground state in the weak cou-

pling region for a two-band Fermi system.

3.1 Model Hamiltonian

To study the breached pair state, we start with a two-species fermionic system. In addition

to the weak BCS attraction ( denoted by −g1), we consider a strong interaction (g2) of

the Feshbach variety which couples a fermion of type a with a b fermion to form a bosonic

molecule B. Our model resembles the one used in [26, 27], but we extend it to cover the

two-species case. The system is described by the Hamiltonian:

Ĥ =
∑

(Eq + 2ν)B†
qBq +

∑
ǫa
pa†

pap +
∑

ǫb
pb†pb p − g1

∑
a†
p′b

†
−p′b−pap

+g2

∑
[B†

qaq/2+pbq/2−p + Bqa
†
q/2+pb

†
q/2−p]

(3.1)

Here ap, a†
p are the creation and annihilation operators of atom a, while bp, b†p are the

corresponding operators for atom b. The kinetic energies of species a and b are ǫa
p, ǫb

p.

The annihilation and creation operators for the composite boson B formed out of a and

b are Bq and B†
q respectively. The kinetic energy of the bosons is Eq and the threshold

energy of the composite bose particle energy band is 2ν.

We have a constraint: the total number of bare fermi atoms must be conserved:

〈N̂〉 = 〈Σa†
pap〉 + 〈Σb†pbp〉 + 2〈ΣB†

qBq〉 (3.2)



Chapter 3. Stability of a Breached Pair State 43

Replacing Ĥ with the grand canonical Hamiltonian H = Ĥ − µN̂

H =
∑

(Eq + 2ν − µB)B†
qBq +

∑
ǫ̃a
pa†

pap +
∑

ǫ̃b
pb†pbp − g1

∑
a†
p′b

†
−p′b−pap

+g2

∑
[B†

qaq/2+pbq/2−p + Bqa
†
q/2+p

b†
q/2−p

]
(3.3)

In the above Hamiltonian, ǫ̃a
p = ǫa

p − µa and ǫ̃b
p = ǫb

p − µb, while µa, µb, µB are the

chemical potentials for the fermion species and the composite boson respectively.

We now restrict ourselves to the case where only zero-momentum bosons are formed.

i.e., q = 0, Eq = 0. Therefore,

H =
∑

(2ν−µB)B†
0B0+

∑
ǫ̃a
pa†

pap+
∑

ǫ̃b
pb†pbp−g1

∑
a†
p′b

†
−p′b−pap+g2

∑
[B†

0apb−p+B0a
†
pb†−p]

(3.4)

Using this Hamiltonian, we study the effect of the Feshbach parameters first on the

gapped BCS superfluid state, and then on the gapless Sarma state, taking a variational

approach. The stability of such a gapless state is analysed using the concept of Meissner

mass [28, 29]. Considering the BCS-BEC crossover picture, we show that the breached

pair state is stable only in a narrow region in the BEC side, bounded by two magnetic

field values.

3.2 Effective Coupling and Gap Equation

We want to study the ground state of the two-fermion system by a variational method.

We take |Ψ〉 = |F 〉 ⊗ |B〉 as the trial form of the ground state of the system. Here |F 〉
=|BCS〉 =

∏
(Up +Vpa

†
pb†−p)|0〉 , i.e., the probability of the pair (ap↑, b−p↓)being occupied

is |Vp|2, and the probability that it is unoccupied is |Up|2 = 1 − |Vp|2 , while |B〉 is the

ground state for the condensate part of the boson subsystem.

Our variational prescription is that |B〉 has to be chosen in such a manner that it is

an eigenstate of the annihilation operator B, which would make it a coherent state.
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|B〉 =ΣCn|n〉. Since |B〉 is an eigenstate of B, B|B〉 =α|B〉 where α is a number.

This leads to Cn = αnC0/(n!)1/2.

Normalization condition gives 〈B|B〉 = 1, gives C0 = exp(−α2/2).

This yields |B〉 = exp(−α2/2)Σαn/(
√

n!)|n〉.
Noting |n〉 = (B†)n/

√
n!|0〉, we write |B〉 = exp(−α2/2)exp(αB†)|0〉.

To determine α, we note that 〈B|B†B|B〉 = α2.But 〈B|B†B|B〉 = NB, the expectation

value of the total no. of bosons in the ground state. So α =
√

NB Therefore, the ground

state of the system can be written as

|Ψ〉 =
∏

(Up + Vpa
†
pb

†
−p)|0〉 ⊗ exp(−α2/2 + αB†)|0〉 (3.5)

From the Hamiltonian (3.4) and the ground state wave function (3.5), the ground state

energy of the system would be

E =
∑

(ǫ̃a
p + ǫ̃b

p)V 2
p − g1

∑

p,p′

UpVpUp′Vp′ + (2ν − µB)α2 + 2g2α
∑

p

UpVp (3.6)

Minimizing E with respect to Vp and α we get

4ǫ+
pVp − 2geff

∑

p,p′

Up′Vp′(Up − V 2
p /Up) = 0 (3.7)

where ǫ+
p = (ǫ̃a

p + ǫ̃b
p)/2.

geff is defined by the relation

geff = g1 + g2
2/(2ν − µB) (3.8)

We note that this expression matches with the one obtained by Ohashi et al [26] using

diagrammatic methods.

Now, if we choose geff

∑
p′ Up′Vp′ = ∆, the usual form of the gap equation follows, and

we can identify ∆ as the gap in the excitation spectrum. A similar relation is obtained in

finite temperature systems as well, if we incorporate the appropriate Fermi distribution

functions in the expression of the free energy.
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3.3 Temperature Dependence

At finite temperatures, let fp be the probability of an a particle being excited with

momentum p, and gp be the probability of a b particle being excited with momentum −p.

Then the entropy of the system is given by
∑

p fplnfp +
∑

p gplngp+
∑

p(1−fp)ln(1−fp)

+
∑

p(1 − gp)ln(1 − gp) [5, 30]. And the Helmholtz free energy Ω = E − TS becomes

Ω =
∑

p

ǫ̃a
p[(1 − fp − gp)V 2

p + fp] +
∑

p

ǫ̃b
p[(1 − fp − gp)V 2

p + gp] + (2ν − µB)α2

−g1

∑

p,p′

Up′Vp′UpVp(1 − fp − gp)(1 − fp′ − gp′) + 2g2α[(1 − fp − gp)UpVp]

−β−1[fplnfp + gplngp + (1 − fp)ln(1 − fp) + (1 − gp)ln(1 − gp)]

(3.9)

Proceeding as before, and using the conditions for minimum, we observe that

α = −g2

∑

p

UpVp(1 − fp − gp)/(2ν − µB) (3.10)

It follows that just like the zero temperature case, here, too, the system can be treated

in the standard BCS framework, provided we use geff = g1+g2
2/(2ν−µB) as the coupling.

In a two-species fermionic system, had there been only BCS attraction, and no Feshbach-

related term, the gap equation would be [5, 31]

∆ = g1

∑

p

UpVp(1 − fp − gp) (3.11)

The critical temperature (temperature at which the gap vanishes) is given by

TC =
σ∆0

2π
exp[−1

2
F (ac)] (3.12)

where σ =
√

mamb/(ma + mb) (3.13a)

F (ac) = Ψ(
1

2
+

ia

π
) + Ψ(

1

2
− ia

π
) (3.13b)

a =
β

2
(mbµb − maµa)/(ma + mb) (3.13c)
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Ψ being the digamma function. ma and mb are the masses of fermions a and b respectively.

∆0 is the BCS gap in the weak coupling limit, which is given by

∆0 = 2
8

e2
ǫF exp(− 1

ρ(0)geff

) (3.14)

Here ρ(0) is the density of states in the Fermi level, e is the base of natural logarithms,

and ǫF is the Fermi energy.Thus the value of Tc can be raised or lowered by adjusting 2ν,

the tunable parameter depending on the Feshbach resonance process.

In our system, all these relations hold good, provided g1 is replaced by geff . Now, if

µB < 2ν, we have geff > g1 from relation (3.8). Thus, we have a greater value of ∆0,

and Tc is, therefore, higher than what it was when there was no possibility for molecule

formation. On the other hand, if µB > 2ν, we have geff < g1, and we get a lower value

of Tc. Thus the value of Tc can be raised or lowered by adjusting g2 and ν, since both of

them are tunable parameters depending on the Feshbach resonance process.

3.4 Gapless Excitations

Next we study gapless excitations.The quasiparticle dispersions as obtained from standard

BCS-like treatment is of the form [31]:

Ea,b
p = ±

ǫ̃a
p − ǫ̃b

p

2
+

√
(
ǫ̃a
p + ǫ̃b

p

2
)2 + ∆2 (3.15)

Depending on the values of particle masses and corresponding chemical potentials,

these quasiparticle excitations can be negative, thus paving the way for having gapless

excitations. This is possible only if the magnitude of ∆ is less than a critical value

∆c [3, 31].

∆c =
|mbµb − maµa|

2
√

mamb

(3.16)

When |∆| > ∆c, both Ea
p and Eb

p remain positive for all values of p. This corresponds

to usual BCS pairing. When |∆| < ∆c, either Ea
p or Eb

p crosses zero at the points:
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Figure 3.2: (εa,b
p -p) curve when the Feshbach term is absent
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Figure 3.3: (εa,b
p -p) curve for µB − 2ν = .5, g2 = .6

0.8 0.9 1.0 1.1 1.2
0.0

0.2

0.4

0.6

0.8

p�pF
b

E
pa
�
Î

b F

0 1 2 3 4
0
2
4
6
8

10
12
14

p�pF
b

E
pb
�
Î

b F

Figure 3.4: (Ea,b
p -p) curve for µB − 2ν = −.5, g2 = .6
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p2
1,2 = (mbµb + maµa) ∓ [(mbµb − maµa)

2 − 4mamb∆
2]1/2 (3.17)

The difference between p1 and p2 gives the span over which we get a gapless region in

the parameter space. The state with gapless excitations marks the coexistence of the

superfluid and normal components at zero temperature, and is called the Sarma phase,

or the Breached Pair state. When we include the Feshbach term in the Hamiltonian, we

have a control over this Sarma phase as well.

In Figs. 3.3, 3.3 and 3.4, we plot the E-p curve for a two-species system. Here

we scale all energies by ǫbF
( Fermi energy of species b) and all momenta by pbF

(Fermi

momentum of species b). It is evident that in this convention, mb = .5 and µb = 1(in the

BCS limit). We choose ma = .1, µa = 6 and multiply quantities g1, g2, (2ν − µB) and

geff by ρ(0), the density of states at the Fermi level to get dimensionless quantities g̃1,

g̃2, (2̃ν − ˜µB) and ˜geff . Let g̃1 = 0.3. Had there been no Feshbach coupling g2, we would

get a gapless region from p=1.01 to p=1.85 ( in units of pbF
) as seen from Fig. 3.3.

If g̃2 = .2 is introduced in the system, and we choose ν in such a way that (µ̃B − ˜2ν) =

0.5, we get the Sarma phase for a wider region, from p=1.00 to p=1.95 (in units of pbF
)

as seen from Fig.3.3

If, on the other hand, (µ̃B − ˜2ν) = −.5, the gapless phase vanishes entirely as shown in

Fig. 3.4.

3.5 Stability Analysis

The stability of such a superfluid phase has been studied in different ways like demanding

positivity of the superfluid density [23], ensuring non-negative eigenvalues of the number

susceptibility matrix of the system [23, 32], minimization of thermodynamic potential

[9, 33] etc.

Here we adopt the first criterion and demand that the superfluid density ns must be

positive. If the fermions are charged, this is equivalent to saying that the Meissner mass-

squared must be positive [32], since ns, the superfluid density, and M2, the Meissner mass

squared obey the relation : M2 = nsq2

m2 [28], q being the electronic charge and m, the mass
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of the particle. In our treatment, we work with the superfluid density directly, since we

are talking of a charge neutral Fermi system. However, the term “Meissner mass” can still

be used just to continue the analogy with superconductors, as it only serves to express

the superfluid density to within a multiplicative constant.

For convenience, we assume that the two species have equal masses. Therefore, equa-

tion (3.17) takes a simpler form:

p1,2 = 2m[µ̄ ±
√

δµ2 − ∆2]
1

2 (3.18)

where µ̄ = (µa + µb)/2 and δµ = (µa − µb)/2. Thus, ∆c = δµ here.

He et al [28,29] have shown that when the two species have equal masses, the superfluid

density can be expressed as

ns = mn

(
1 − ηδµθ(δµ − ∆)√

δµ2 − ∆2

)
(3.19)

where η =
p3

1 + p3
2

6π2n
. We note that here n marks the bare fermion density or the density

of the atoms that have not been part of the condensate yet ( i.e., unpaired fermions,

fermions forming the Cooper pair and fermions that constitute the non-condensate bosons

all are counted in n). Since the total number of bare Fermi atoms is conserved, so n+2NB=

constant, NB being the expectation value of the total number of bosons in the condensate.

If ∆ < ∆c, for ns is to be positive,
ηδµ√

δµ2 − ∆2
has to be less than 1, which is satisfied if

η < 1, and |η2 − 1| >
∆2

δµ2
.

Now when both p1 and p2 are real and there is a breached pair phase between them (this

state has sometimes been termed as BP2 state in the literature [34,35]), the bare fermion

density can be written as:

n =
1

2π2

∫ p2

p1

p2 dp +
1

π2

[∫ p1

0

V 2
pp2 dp +

∫ ∞

p2

V 2
pp2 dp

]
(3.20)

Here the first term denotes the contribution from the gapless region between p1 and p2,

i.e., the normal component. The next two integrals take care of the contributions from the

gapped superfluid regimes, one from momenta 0 to p1 and the other from p2 to infinity.
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p -p) curve when p1 is imaginary

The terms, when rearranged, gives

n =
p3

1 + p3
2

6π2
+

1

π2
(−

∫ p1

0

p2U2
p dp +

∫ ∞

p2

p2V 2
p dp) (3.21)

In the weak coupling limit, the last two integrals are very small, and hence, can be ne-

glected. Therefore, η=1, and ns is negative. Thus, the Sarma state is unstable here.

We shift our focus to a special case, where only one of p1 and p2 is real ( in the

literature, this is called the BP1 state [34, 35]). In this case the ε-p curve resembles Fig.

3.5, and the fermion density is

n =
p3

2

6π2
+

1

π2

∫ 0

p2

p2V 2
p dp (3.22)

This yields η < 1, and thus the stability criterion is fulfilled. Now, from equation(3.18),

p1 is imaginary if
√

δµ2 − ∆2 > µ̄, i.e., −µaµb > ∆2. So, Sarma phase is stable only in

a region where the chemical potential of one species is positive, and the other, negative,

provided the magnitude of their product is greater than ∆2.

Leggett has shown [36] that in the BCS-BEC crossover picture, the chemical potential

can be determined by solving the gap and the number equations.
∑

p

(
1

ǫp
− 1

Ep

) =
m

2πh̄2as

(3.23a)

∑

p

(1 − ǫp − µ̄

Ep

) = 2
k3

3π2
(3.23b)
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Here as is the a − b scattering length and k is the Fermi wave number.

Extending these equations to the two species case, we get

∞∑

|p|=0

(
1

ǫp
− 1√

ǫp2 + ∆2
) =

m

2πh̄2as

(3.24a)

∞∑

|p|=p2

(1 − ǫp − µ̄√
ǫp2 + ∆2

) = 2
k3

bF

3π2
(3.24b)

∞∑

|p|=0

(1 − ǫp − µ̄√
ǫp

2 + ∆2
) +

p2∑

|p|=0

(1 +
ǫp − µ̄√
ǫp

2 + ∆2
) = 2

k3
aF

3π2
(3.24c)

Where kaF
and kbF

corresponds to the Fermi wave number of the more populated

species, and the less populated species respectively. Let k′ denote the wave number

corresponding to the breaching point for the BP1 state, i.e., p2 = h̄k′. Converting the

sums into integrals, we obtain that in the weak coupling limit, µ̄ = (ǫaF
+ ǫbF

)/2 =

h̄2(k2
aF

+ k2
bF

)/4m, as expected. In contrast, in the strong coupling limit,

µ̄ = − h̄2

2ma2
s

+
2ǫbF

(kbF
as)

3π

(
1 +

2k′3a3
s

π

)
(3.25)

provided k′ << µ̄ (a condition which is satisfied if the population imbalance is small

compared to the total population). In this case µ̄ asymptotically approaches −h̄2/2ma2
s,

i.e., half the binding energy of the molecule.

If we think of µa and µb separately, the first one differs from the other by the Fermi

energy of the excess fermions. Moreover, in the presence of a magnetic field H, there

is an asymmetry between the chemical potentials given by mBH, mB being the fermion

magneton. So we have

δµ =
1

2

(
h̄2k′2

2m
+ mBH

)
(3.26)

µa,b = µ̄ ± δµ = − h̄2

2ma2
s

+
2ǫbF

(kbF
as)

3π

(
1 +

2k′3a3
s

π

)
±

(
h̄2k′2

4m
+

mBH

2

)
(3.27)

Our domain of interest is when µa is positive, and µb is negative, i.e., while approaching

the BEC side, µb has already crossed zero but µa has not. Now, µa and µb becomes zero

at magnetic field values H1 and H2 respectively, where
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Figure 3.6: Behaviour of µa and µb in the crossover picture
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H1 = (2/mB)

[
h̄2

2ma2
s1

− 2ǫbF
(kbF

as1)

3π

(
1 +

2k′3a3
s1

π

)
− h̄2k′2

4m

]
(3.28a)

H2 = (2/mB)

[
− h̄2

2ma2
s2

+
2ǫbF

(kbF
as2)

3π

(
1 +

2k′3a3
s2

π

)
− h̄2k′2

4m

]
(3.28b)

Here as1, as2 are the respective values of the scattering length at H1 and H2. Between

these two magnetic field values, the Sarma state becomes stable.

3.6 Estimates of H1 AND H2

Experiments with population-imbalanced fermionic systems have been done by Zwierlein

et al. [15, 16] and Patridge et al [17]. They obtained the signature of superfluidity in an

unequal mixture of two spin states of 6Li atoms, and a quantum phase transition between

the superfluid state and the normal state was observed at a critical polarization. Another

method for experimental detection of the breached pair phase has been suggested by Yi

et al. [34]. However, no clear signature of this gapless phase has been obtained till date.

We now use the data obtained from these experiments on population-imbalanced gas

of 6Li atoms [15, 16] to make an estimate of the magnetic field values corresponding to

the breached pair Sarma state. To be able to use the expressions (3.28a,3.28b), we need

to know the scattering length as a function of the magnetic field. This is provided by

as = a0

(
1 − Γ

H − H0

)
, where a0 is the background background scattering length, Γ is

the width of the resonance, and H0 is the position of the resonance peak.

We use this expression for scattering length, and put ao = 45.5r0 (r0=Bohr radius),

which is the singlet scattering length for 6Li. We also take na = 1.8× 107, nb = 2.6× 106

as population of the two species, H0= 834 G, Γ= 300G ( These values correspond to

experimental data for Feshbach resonances in 6Li as reported in [15, 16, 37].) We now

solve equations (3.28a,3.28b) explicitly to find H1 to be 832.40 G and H2 to be 833.95 G.

It would be interesting to speculate that the superfluid observed by Zwierlein et al. in

this range is of the BP1 variety.

This estimate of H1 and H2 is not a highly accurate one. In fact, the range of the

breached pair state should get shifted a bit towards lower values of the magnetic field.
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Actually, for deriving equations (3.28a,3.28b), we had assumed the magnitudes of the

chemical potentials to be very large compared to ∆ and k1, an assumption which does

not hold at points where µa and µb become zero. However, the values are not unreasonable

in view of the fact that in the BCS-BEC crossover picture, the chemical potential falls

quite sharply after crossing zero and quickly becomes a large negative quantity.

3.7 Summary and Discussion

Here we have studied a two-species fermionic system in the presence of Feshbach reso-

nance, taking a variational route with an explicit construct of the ground state. It was

observed how the critical temperature as well as the BCS gap behaves in the positive and

the negative detuning regions respectively. Furthermore, the gapless breached pair state

was discussed, and its stability was analysed using the concept of Meissner mass. We

showed that a breached pair state with two Fermi surfaces is always unstable, while its

single Fermi-surface counterpart is stable when the chemical potential of the two pairing

species bear opposite signs.

The stability of the breached pair state is indeed a widely debated issue. Although it

has often been suggested that the BP1 state might be stable in deep BEC region, nothing,

to the best of our knowledge, was said anything about how ‘deep’ that really is. In this

note, however, we observe that, the requirement that µa and µb should be of opposite

signs, automatically puts two bounds in terms of the Feshbach magnetic fields, between

which the gapless state is stable. Moreover, this stable breached pair state is obtained

not in deep BEC, but near the vicinity of the point when the average chemical potential

crosses zero, i.e., right after the onset of condensation.

Gubankova et al [32], while discussing the stability of breached pair states by analysing

the number susceptibility, commented that stable gapless states with a single Fermi surface

exist for negative average chemical potential. In a recent paper, A. Mishra et al [33]

reached the same conclusion by comparing the thermodynamic potentials of the condensed

phase and the normal phase. Although the criterion they arrive at (the negativity of the

average chemical potential) does not fully match with ours ( the chemical potential of the

two species to have opposite signs), there is definitely a region of overlap.
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In their experiment, Zwierlein et al. observed that superfluidity breaks down when

the pairing gap ∆ becomes small compared to the chemical potential difference µa − µb.

We note that this matches with the stability criterion for the BP2 state, since, if ∆ < δµ

and η = 1, the state becomes unstable, as seen from equation (3.19).

As for the BP1 state, we have shown that this state is stable in a region where µa and

µb have opposite signs, which can be achieved by keeping the system between two specific

magnetic field values. For simplicity we took the two species to have same masses in

our calculation, but the treatment should be extendable to a situation where the fermion

species are of different masses, as for example in a 6Li-40K system.
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Chapter 4

Quench Dynamics in a BCS-like Fermi Superfluid

System

4.1 Introduction

In the last few decades, quench dynamics has been a subject of intense theoretical research

[1–4]. In the last few years it has become all the more important because of the high

tunability associated with cold atom experiments. In these experiments, although it

is possible to have an excellent control over the system parameters, it is not always

feasible to vary them in a perfectly adiabatic way. Moreover, the ability to rapidly change

parameters enables one to study the quantum evolution that follows. Abrupt changes

in the parameter value often leads to newer properties of the system, and demands for

a thorough investigation of the nonadiabatic “fast quench” dynamics. Superfluid-to-

Mott insulator transition, BCS-BEC crossover are some of the phenomena for which

nonadiabatic dynamics has been studied in the recent past [5–8].

In quench studies, the system parameters are changed very fast. It is assumed that the

system is prepared in the ground state of an initial Hamiltonian and then the subsequent

evolution is controlled by the final Hamiltonian. However, it has been found that the long

time steady state still retains information of the initial state [9–13] .

For sudden quench, the final state of the system is not the same as the ground state

of the final Hamiltonian. Thus, defects are produced [14,15] .
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4.2 Quench Dynamics and Scaling Laws

Quench Dynamics is extremely important in the context of quantum phase transitions

(QPT). Unlike usual classical phase transitions, quantum phase transitions are entirely

driven by quantum fluctuations and not by thermal ones. So they can take place in zero

temperature as well. However, quite often the quantum phase transitions can be linked

with analogous thermal transitions, and QPT in a d-dimensional system can be mapped

into thermal transition in a d+z dimensional system. Here z is the dynamical critical

exponent [16,17]. A significant attribute of QPTs (and second order classical transitions

as well) is the universality of the low energy properties of the system, and the transition is

characterized by diverging length and time scales near the quantum critical point. Low-

energy properties of the system can be described by parameters like correlation length

or energy gap, and they show power-law scaling behaviours with respect to the tuning

parameter [16].

In our work we first study the scaling behaviour of the response of an ultracold quan-

tum system to sudden quenches. The dynamics will be universal if it is dominated by

the low energy excitations . The system that we consider here is a BCS-like ultracold

superfluid system. We treat the coupling as the driving parameter through which the

quench can be achieved. However, there is no actual phase transition here. So it is not a

quantum phase transition that we talk about, but a rapid change in the superfluid state

as the BCS-coupling strength is changed suddenly. We wish to probe if scaling laws still

hold for parameters like defect density and quasiparticle excitation energy.

The correlation length ξ which defines the length scale separating qualitatively differ-

ent behaviour of the order parameter, diverges with the tuning parameter λ as [17]

ξ ∼ 1

|λ − λc|ν
.

In quantum systems a divergent time scale is characterized by a vanishing energy scale

∆ ∼ 1

ξz
∼ |λ − λc|zν ,

where z is dynamical exponent. The energy scale ∆ represent a gap in the spectrum or

some crossover energy scale which separates region with different dispersion relations.
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Another important quantity that becomes important in the study of quench dynam-

ics is susceptibility. In case of QPT, susceptibilities usually have singular non-analytic

behaviour characterized by there own critical exponent near quantum critical point. It

was realized recently that fidelity susceptibility (FS) is a very useful measure to analyze

quantum evolutions. If |ψn(λ)〉 denotes the instantaneous eigenstates of the Hamiltonian

H(λ) and En(λ) are the instantaneous energies then FS is the leading order of expansion

of the overlap of the ground state functions |〈ψ0(λ + δλ)|ψ0(λ)〉|2 in power of δλ.

|〈ψ0(λ + δλ)|ψ0(λ)〉|2 ≈ 1 − δλ2χF (λ) (4.1)

Again, we emphasize that here we are not dealing with quantum critical systems, but

a quantum system which has been changed drastically as the coupling is altered via

Feshbach resonance. Our aim is to study the scaling behaviour of the response of the

system, and whether the dynamics will be universal in the low-energy spectrum.

We assume the system is initially prepared in the ground state of some Hamiltonian

H0. We then suddenly apply perturbation λV , where λ is a small parameter and V is

some operator independent of λ. The scaling of various quantities for a quantum phase

transition using ordinary perturbation theory has been discussed in Ref. [16]. For example

fidelity (f(λ) ) scales as

f(λ) = |λ|dν . (4.2)

Likewise heat density which is defined as the difference between the energy after the

quench and the ground state energy, scales as

Q(λ) ∼ |λ|(d+z)ν (4.3)

The scaling of the density of quasi particle excitations is given by

nex ∼ |λ|dν (4.4)

We want to probe if exponents can be calculated in a similar fashion and linked to

each other for our system also.
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4.3 Model Hamiltonian and Sudden Quenches

1 In this article we consider a superfluid BCS-like system undergoing sudden quenches.

Now, the grand-canonical Hamiltonian for a weakly interacting Fermi gas with repulsion

between the particles is given by,

H =
∑

p

ξpψ†
pψp − g

∑

p′,p

ψ†
↑p′a

†
↓−p′ψ↓−pψ↑p (4.5)

The first term denotes the kinetic energy of the fermions and the second term represents

the four-fermion interaction. Here g = 4πh̄2a/m < 0 in the BCS-coupling whose sign is

positive if the interaction is attractive. , Also, ǫp = −[cospx + cospy] is the band energy

spectrum for the fermions. ξp = εp − µ, and µ is the chemical potential.

The gap parameter ∆(p) is dependent on the pairing symmetry.

For the s-wave pairing,∆(p) is a constant, i.e.,

∆(p) = ∆0 (4.6)

For the d-wave pairing,

∆(p) = ∆0(cospx − cospy) (4.7)

It can be written in terms of θ using px = pcosθ and py = psinθ.

Here we consider g as the driving parameter. Before the quench the Superfluid ground

state is given by:

|ψ0(g)〉 =
∏

p

(Up + Vp ψ†
p↑ψ

†
−p↓)|0〉 (4.8)

where

U2
p =

1

2
(1 +

ξp

Ep

) (4.9)

V 2
p =

1

2
(1 − ξp

Ep

) (4.10)

1The work reported here is in collaboration with Sanhita Modak and K. Sengupta
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with Ep =
√

∆2 + ξ2
p and

∆ = −g
∑

p〈ψ−p↓ψp↑〉 (4.11)

= −g
∑

p

UpVp(1 − 2Np) (4.12)

Np =
1

expβǫp + 1
(4.13)

4.4 Fidelity and Defect Density after Sudden Quench

We now suddenly change the parameter g to g + δg and after the quench the superfluid

ground state is given by,

|ψ0(g + δg)〉 =
∏

p

(Ũp + Ṽpψ†
p↑ψ

†
−p↓)|0〉 (4.14)

Therefore the overlap between the two ground states at g and g + δg can be defined as,

F (g, g + δg) = 〈ψ0(g)|ψ0(g + δg)〉. (4.15)

This overlap marks the “fidelity” of the system, a quantity that represents the similarity/

difference between two states. We define

f(g, g + δg) = 1 − |F (g, g + δg)|2 (4.16)

= 1 −
∏

p

[UpŨp + VpṼp] (4.17)

as a measure for this fidelity.

We plot f(g) ≡ f(g, g + δg) = 1− |F (g, g + δg)|2 vs. δg, the change in the coupling. To

see whether the system shows any power-law behaviour, we make a log-log plot as well.

For both the s-wave and d-wave pairing, the slope comes as 2.032 from the log-log graph

which is nearly equal to 2. Therefore, the scaling exponent can be considered to be 2.

We define the number operator as
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Figure 4.1: (a) f(g) vs. δg plot for s-wave pairing (b) The log-log plot gives the scaling

exponent.
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Figure 4.2: (a) f(g) vs. δg plot for d-wave pairing (b) The log-log plot gives the scaling

exponent.

N̂ =
∑

p

[ψ†
p↑ψp↑ + ψ†

−p↓ψ−p↓] (4.18)

So the density of quasi particle excitation is given by:

nex = 〈ψf |N̂ |ψf〉 − 〈ψf
G|N̂ |ψf

G〉 (4.19)

Now for sudden quench |ψf〉 = |ψi
G〉, where |ψf(i)

G 〉 is the ground state after (before) the

quench and |ψf〉 is the final state after quench. Therefore

nex = 〈ψi
G|N̂ |ψi

G〉 − 〈ψf
G|N̂ |ψf

G〉 (4.20)

=
∑

p

2[V 2
p − Ṽ 2

p ] (4.21)
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Figure 4.3: (a) Quasiparticle excitation vs. δg plot for s-wave pairing (b) The log-log plot

gives the scaling exponent.
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Figure 4.4: (a) Quasiparticle excitation vs. δg plot for d-wave pairing (b) The log-log

plot gives the scaling exponent.

We find that the slope for quasiparticle excitation density graph comes as 1.059, which

is essentially equal to 1. The same scaling exponent is found for quasiparticle excitation

energy as well.
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4.5 Periodically Driven BCS Systems

2 Next we study the effect of periodically driven quenches in BCS superfluid systems . In

the last few years, periodically driven quantum systems have generated a lot of research

interests and activities, especially from the theoretical stand-point [18–21]

It has been observed that coherent periodic driving in a class of integrable quantum

many-body systems can result in exotic quantum phenomena like dynamical many-body

freezing. Highly non-monotonic freezing behaviour is observed in these cases with respect

to the driving frequency [21, 22]. In the high driving frequency limit, all the many-body

modes remain maximally frozen for all time for certain combination of the driving param-

eters, while in the low-frequency limit, universal behaviour of the response is observed

since only the excitations of the low-lying critical modes of the system [23] is relevant.

The experimental realization of periodically driven quantum systems was achieved in

the 90s by F. L. Moore et al. [24] when they devised a quantum delta-kicked rotor in

the form of ultracold sodium atoms in a periodic standing wave pulsed on periodically in

time. Later C. Ryu et al. [25] observed high-order resonances in a quantum delta-kicked

rotor of Bose-condensed Na atoms.

This connection between cold atoms and quantum rotors suggests that periodic drives

can be applied to other cold-atom experiments, and can be studied in the context of both

BEC and BCS superfluidity, which are connected by a crossover via Feshbach resonance

[26–31]. Driven BEC [32]and superfluid-Mott transition in the presence of an oscillatory

force in a Bose-Hubbard model [33] have been studied theoretically.

In our work, we focus on the other side of the spectrum, i.e., on ultracold BCS su-

perfluids. We drive the system by varying the chemical potential sinusoidally in time

and observe the non-adiabatic dynamics. A large driving frequency ensures a fast quench

while a small ω corresponds to slow quenching dynamics. We restrict our study only in

the low driving frequency and amplitude regime.

2This section and the following sections are results of a collaborative project. Ref: “Periodic Dynamics

of Fermi superfluids in the BCS regime”, Analabha Roy, Raka Dasgupta, Sanhita Modak, Arnab Das

and K. Sengupta, to be submitted soon.
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4.6 The Model for Periodic Driving

In this part, we study the response of a fermionic superfluid in the BCS regime under

the influence of a periodic drive. The periodicity is introduced in the chemical potential

µ(t) which is the time-dependent parameter here that causes the quench. At equilibrium,

µ0 is the chemical potential that fixes the particle number, and µ(t) is chosen to be

µ0 + µa sin ωt.

The Hamiltonian is given by

H =
∑

p

(ǫp − µ(t))ψ†
pψp − g

∑

p′,p

ψ†
↑p′ψ

†
↓−p′ψ↓−pψ↑p (4.22)

Here, ψ†
p represents the creation operator and ψp represents the annihilation operator

for Fermions of momentum p.

The time-dependent Bogoliubov de-Gennes Hamiltonian for the same system is given

by

H(t) =
∑

p

hp(t) (4.23)

hp(t) =

(
ǫp − µ(t) ∆

∆∗ −(ǫp − µ(t))

)

= (ǫp(t) − µ(t))σz +
1

2
(∆(t)σ+ + ∆∗(t)σ−)

If ∆ = ∆∗,

H = (ǫp − µ(t))σz + ∆σx

in terms of the Pauli matrices σx,y. σ± =
1

2
(σx ± iσy )are the usual ladder operators.

∆ and ǫp are determined by the system properties and the chemical potential µ is the

tunable control parameter.
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4.7 Rotating Wave Approximation

We split the Hamiltonian into two parts H0 = ∆σx and v(t) = (ǫp − µ(t))σz

We make a transformation to a rotating frame with the operator W .

W (t) = exp(−i

∫
v(t)dt)

= exp[−i((ǫp − µ0)t +
µacosωt

ω
)σz]

= exp(−i
η(t)

2
σz)

(4.24)

Here η(t) = 2(ǫp − µ0)t +
2µ0cosωt

ω

Therefore,

H ′ = W †H0W = ∆exp(i
η(t)

2
σz)σxexp(−i

η(t)

2
σz)

= ∆(eiησ+ + e−iησ−)
(4.25)

Now,

eixcosθ =
∑

inJn(x)einθ (4.26)

eiη(t)

= ei(2(ǫp−µ0)t+
2µ0cosωt

ω
)

= ei(2(ǫp−µ0)t
∑

inJn(2µ0/ω)einωt

=
∑

inJn(2µ0/ω)ei(nω+2(ǫp−µ0))t

(4.27)

We know,

σ+ =

(
0 1

0 0

)
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and

σ− =

(
0 0

1 0

)

Thus the matrix is off-diagonalised. We have,

H ′(t) = ∆

(
0

∑
inJn(2µ0

ω
)ei(nω+2fp)t

∑
inJn(2µ0

ω
)e−i(nω+2fp)t 0

)

Let (ǫp−µ0) = fp. We ignore all the faster oscillating terms in the off-diagonal sum in H(t)

except for the resonant term n = nr, for which the effective frequency (nω + 2(ǫp − µ0)is

the smallest. In the high frequency limit nr = 0.

Therefore,

H ′(t) = ∆

(
0 J0(

2µ0

ω
)e2ifpt

J0(
2µ0

ω
)e−2ifpt 0

)

ih̄
∂

∂t

(
up

vp

)
= ∆

(
0 J0(

2µ0

ω
)e2ifpt

J0(
2µ0

ω
)e−2ifpt 0

) (
up

vp

)

Putting h̄ = 1

∂up

∂t
= −i∆J0(

2µ0

ω
)e2ifptvp

∂vp

∂t
= −i∆J0(

2µ0

ω
)e−2ifptup

Solving for v(t) and u(t),

vp(t) = −2ie−ifpt[
J0(

2µ0

ω
)∆

2φp

sin(φpt)]up(0) + e−ifpt[cos(φpt) + i
fp

φp

sin(φpt)]vp(0)

up(t) = −2ieifpt[
J0(

2µ0

ω
)∆

2φp

sin(φpt)]vp(0) + eifpt[cos(φpt) − i
fp

φp

sin(φpt)]up(0)
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Here φp =
√

J2
0 (2µ0

ω
)∆2

p + f 2
p

We see that for p = π/2 and p = π, |vp(t)|2 oscillates with a diminishing amplitude, i.e.,
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Figure 4.5: |vp(t)|2 vs (2µ0

ω
) for various p’s

there is a freezing. Here all energies are scaled by EF , and h0 is taken as 1.

In case of Ising systems, nonmonotonic behaviour of the response with respect to ω

showing peak and valley structures has been termed as “freezing”’, can contrasted with

the expected monotonic behaviour manifested in periodic driving in classical systems [21].

Here also, the oscillation is indicative of some freezing. Non-monotonic freezing comes

from the non-monotonicity of J0(
2µ0

ω
), as the peaks in |vp(t)|2 corrrespond to the dips of

the Bessel function, and vice versa.

For d-wave pairing, where there is a directional dependence of the gap parameter, we

observe similar features, i.e., oscillation with a decaying amplitude. These plots are for

µ0=25.

In the above plots, self-consistency of ∆ has not been taken into account explicitly.
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4.8 Magnetization and Defect Production in the Periodic Quench

To study the effect of periodic quench, we choose a few observable quantities. The first

amongst them is the effective magnetization m(t). It is defined as

mp(t) = 〈ψp(t)|σz|ψp(t)〉,
m(t) =

∑

p

mp(t) =
∑

p

[1 − 2|vp(t)|2] (4.28)

where σz is the Pauli matrix. Here m(t) plays a similar role as that of magnetization

of the Ising model, only, the self-consistency condition is not there in the Ising case. m(t)

will be equal to m(0), the initial value of the magnetization after a full drive cycle, i.e.,

at T = 2π/ω. This is true for both in the impulse (where the wavefunction does not have

time to adjust itself in accordance with the drive) and adiabatic limit.

The long time average of m(t) is defined as :

Q ≡ lim
n→∞

1

nT

∫ nT

0

dt × m(t) (4.29)

The second quantity which is relevant here is the wavefunction overlap. Let us first

define the amplitudes uad
p (t) and vad

p (t) which correspond to the values of up and vp at

time t for adiabatic evolution. The ground state of H with µ = µ(t) can be written in

terms of these quantities as

0 5 10 15 20 25 30

0

1

2

3

4

5

2Μ0�Ω

J 0
H2
Μ

0�
Ω
L,
Èv
Ht
L

2

Figure 4.6: Blue line: |vp(t)|2 and Red line :J0(
2µ0

ω
) plotted against (2µ0

ω
)
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Figure 4.7: |vp(t)|2 vs (2µ0

ω
) for various θ’ s

|ψad(t)〉 =
∏

p

(
uad

p (t) + vad
p (t)ψ†

pψ†
−p

)
|0〉

uad
p (t) =

1√
2

(
1 +

[ǫp − µ(t)]

E(p; t)

)1/2

vad
p (t) =

1√
2

(
1 − [ǫp − µ(t)]

E(p; t)

)1/2

(4.30)

Here Ep(t) =
√

[ǫp − µ(t)]2 + ∆2(t).

Since we are talking of a periodic drive, |ψad(tf )〉 = |ψ〉. Let

|ψ(t)〉 =
∏

p

(
up(t) + vp(t)ψ†

pψ†
−p

)
|0〉, (4.31)
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We define the wavefunction overlap F as

F = |〈ψad(t)|ψ(t)〉|2

=
∏

p

Fp =
∏

p

|uad∗
p (t)up(t) + vad∗

p (t)vp(t)|2 (4.32)

The dynamical fidelity of the system is an important parameter to study periodic

quench. It is the overlap between the evolving wave-function and the instantaneous

adiabatic state.Instead of the standard definition of fidelity where the overlap between

the wavefunction with the initial state is measured, here the overlap between the evolving

wave-function and the corresponding adiabatic state at that particular instant becomes

the relevant parameter. It is a measure of the deviation of the wave function from the

instantaneous adiabatic state, and hence represents the non-adiabaticity caused by the

periodic drive.

The defect density or the density of excitations generated due the dynamics at any

instant of time can be written in terms of F as

ρd =
∑

p

ρd(p)

ρd(p) = 1 − Fp = |uad∗
p (t)vp(t) − vad∗

p (t)up(t)|2 (4.33)

The defect density identically vanishes for adiabatic dynamics and thus provides a suitable

measure for deviation from adiabaticity.

We also compute the residual energy which is defined as the additional energy put in

the system due to the drive. This is the difference between the energy of the system at

time t from the instantaneous ground state energy and can be written as

Er(t) =
∑

p

[
〈ψp(t)|hp(t)|ψp(t)〉 − 〈ψad

p (t)|hp(t)|ψad
p (t)〉

]
,

=
1

g

[
∆2(t) + ∆∗2(t) − 2∆2

0

]

−
∑

p

[ǫp − µ(t)] [mp(t) − mad
p (t)], (4.34)

where mad
p = 1 − 2|vad

p |2. Note that the residual energy also vanishes for adiabatic dy-

namics.
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4.9 Numerical Results

In this section, the self-consistent numerical evaluation of the Bogoliubov de-Gennes equa-

tion and subsequent computation of m(t), Q, ρd, and Er is reported. The equilibrium gap

and chemical potential has been taken to be ∆0 = 0.1 and µ0 = 0.01 respectively. The

periodic drive term has been taken to be of the form µasinωt with µa = 0.1.

Next, we plot the effective magnetization m(t) as a function of time t and its time

average Q as a function of the drive frequency ω. We find that for ω ≥ ∆0, Q deviates from

its equilibrium value and never returns to m0 as ω is increased. This behaviour is to be

contrasted with the non-self-consistent dynamics shown in the left panel of Fig. 4.9, where

Q = m(0) for some special values of ω. This phenomenon was termed as exotic freezing

in [21] in the context of one-dimensional Ising model. The self-consistent dynamics, as

appropriate for the current non-integrable system of BCS fermions, seems to destroy such

phenomenon. Next, we consider the behaviour of m(t). We find that for ω ≪ ∆0, m(t)

displays oscillatory behaviour as shown in the right panel of Fig. 4.8. Such an oscillatory

behaviour is seen for all drive frequencies ω ≤ 2∆0 for the non-self-consistent dynamics as

shown in right panel of Fig. 4.9 and is characteristic of dynamics of an integrable system.

However, for the self-consistent dynamics appropriate for fermions in the BCS regime, we

find that the oscillatory behaviour is replaced by realization of the steady state at long

times ωt/(2π) ≥ 1 and for ω ≃ ∆0.

Finally, we consider the behaviour of defect density ρd as shown in Fig. 4.10. Here,

as expected, that the defect density becomes non-zero only for ω ≥ ∆0. The plot of the

self-consistent defect dynamics shown in the left panel of Fig. 4.10 demonstrates that the

defect density is an oscillatory function of ω. The time-averaged defect density is plotted

in the right panel of Fig. 4.10 for the self-consistent dynamics shows that these quantities

display qualitatively similar behaviour.

4.10 Summary and Discussion

The response of a BCS-paired fermionic superfluid has been studied both for a sudden

linear quench and a periodic drive. In our model, the sudden quench has been achieved by
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Figure 4.8: Left Panel: Plot of Q as a function of ω with averaging carried over 10 drive

cycles. Right panel: Plot of m(t) as a function of ωt/2π.

Figure 4.9: Same as in Fig. 4.8 but for the non-self-consistent dynamics.
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Figure 4.10: Plots of the instantaneous and long time averages of the defect density

evaluated BCS fermions in an optical lattice for the self-consistent case.

Figure 4.11: Same as fig 4.10 but for the residual energy.
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abruptly changing the fermion-fermion coupling by means of Feshbach magnetic field. We

observed that just like systems undergoing quantum phase transition (QPT), here also

quantities like the fidelity and defect density follow power law equations when plotted

against the change in the coupling amplitude.

The periodic quench has been introduced by adding a time-dependent sinusoidal com-

ponent in the chemical potential. If the self consistency condition in terms of the gap

parameter is not used, system responses show an oscillatory nature. However, the con-

dition for self-consistency of the gap parameter introduces a non-linearity in the system,

and causes a rapid decay of the response to a stabilized well-defined mean value with

very small oscillations around that point. This is true for quantities such as the effective

magnetization and defect density. The self-consistency also leads to a time-dependence

of ∆. Thus the system remarkably deviates from integrable systems (e.g, Kitaev model,

Ising model) which can be described solely by Bogoliubov like Hamiltonians and the

self-consistency condition is not needed.

If the time dependence of ∆ is ignored or rendered negligible, then the system re-

sembles a decoupled two-level systems (TLS) in momentum space with constant gap

for sufficiently low ω. The corresponding dynamics can be described by Landau-Zener-

Stückelberg theory. The fact that self-consistency plays a significant role in our model can

thus open the door to a modified theory of Landau-Zener tunneling and the Stückelberg

phase.
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Chapter 5

Can Dynamics be Used to Probe

Population-Imbalanced Fermionic System?

In chapters 1 and 3, we have talked about population imbalanced fermionic systems.

In chapter 1, we briefly introduced exotic superfluid phases that result from population

imbalance/ asymmetry amongst the two components of a two-species fermionic gas. In

chapter 3, we focused on one such particular phase : the ‘breached pair state’ and discussed

its stability criteria.

However, in those chapters, we have only dealt with the static properties of the cold

fermionic system. We, of course, had a variable parameter in the form of the Feshbach

magnetic field, which allowed the system to shuttle between Bose Einstein condensate

and fermionic Cooper pairs. Still, if the magnetic field was kept fixed at a certain value,

the system remained at equilibrium. Our analytical treatment never went beyond that.

Dynamical properties are very important aspects of an ultracold atom system. The

study of natural and driven dynamics can indeed unveil newer features of a cold quan-

tum gas, and even throw light to some of its static properties as well. Therefore, many

physicists chose to study the cold atom systems from the perspective of dynamics. R.A.

Barankov et al. discussed the collective nonlinear evolution of BCS state when the pairing

interaction is turned on instantaneously [1]. V. A Andreev et al. showed that if the posi-

tion of the Feshbach resonance is suddenly changed , the superfluid undergoes a coherent

BEC-to-BCS oscillation [2]. M. H. Szyman’ska et al. [3] addressed the situation when the

Feshbach magnetic field is shifted abruptly. They studied the short time dynamics that

followed – damped oscillations with an amplitude depending on the initial conditions. In

81
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this context, they also argued that atom-molecule oscillations are negligibly small and

can be ruled out for all practical purposes.

In this chapter, 1 we aim at studying the dynamical properties of a population-

imbalanced Fermi gas. Instead of introducing a sudden change in Feshbach magnetic

field, we focus on the natural dynamics of the system when a natural fluctuation of Bose

Einstein condensate occurs along the BCS-BEC crossover path, and the system tries to

relax back to the steady state.

Our results show periodic or quasiperiodic oscillations in the condensate fraction. We

find that it is the strength of the Feshbach term that determines whether the oscillation

will be periodic or quasi periodic. Moreover, these frequencies of oscillations are found

to depend on the nature of pairing in the momentum space. We propose that using this

method, the momentum-space structure of the novel pairing states can be mapped. This is

very important since such a study turns out to be an efficient handle on the experimental

probe of the exotic pairing states.

5.1 Model Hamiltonian and Equations of Motion

Our model resembles the one in chapter 3 and the Hamiltonian is identical to the on used

in 3.1. Only, this time we are not considering two arbitrary fermionic atoms, bur either

two hyperfine states of the same atom (so that their masses are equal), or two fermions

with the same mass. This is for calculational simplicity only.

Our Hamiltonian is :

H =
∑

p

ǫp(ψp
†
↑ψp↑ + ψ-p

†
↓ψ-p↓) + g

∑

p,p′,q

ψp+q

2

†

↑
ψ†

-p+q

2 ↓
ψ-p′+q

2 ↓
ψp′+q

2 ↑

+g2

∑

p,q

(ψp+q

2 ↑
ψ-p+q

2 ↓
φ†

q + ψp+q

2

†

↑
ψ†

-p+q

2 ↓
φq) +

∑

q

(Eq + 2ν − µB)φ†
qφq

(5.1)

We work in the mean-field framework, and restrict ourselves to the case where only

zero-momentum bosons are there. This is because we assume that all the bosons are

1The work reported here is based on the paper “Dynamics as a probe for population-imbalanced

fermionic systems”, Raka Dasgupta and J. K. Bhattacharjee, arXiv:1110.4092v1
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formed out of BCS-paired fermions, i.e., the resultant momentum is zero. Later we shall

also discuss the effect of having non-zero momentum pairing. With the zero-momentum

pairing the Hamiltonian becomes -

H =
∑

p

ǫp(ψp
†
↑ψp↑ + ψ-p

†
↓ψ-p↓) + g

∑

p,p′

ψp
†
↑ψ

†
-p↓

ψ-p′

↓ψp′

↑

+g2

∑

p

(ψp↑ψ-p↓φ
† + ψp

†
↑ψ

†
-p↓

φ) + (2ν − µB)φ†φ
(5.2)

For convenience, we split the Hamiltonian into four parts :

HBCS = g
∑

p,p’

(〈ψp
†
↑ψ

†
−p↓

〉ψ−p′

↓ψp′

↑ + ψp
†
↑ψ

†
−p↓

〈ψ−p′

↓ψp′

↑〉) (5.3)

Hkin =
∑

p

ǫp(ψp
†
↑ψp↑ + ψ−p

†
↓ψ−p↓) (5.4)

Hφψ = g2

∑

p

(ψp↑ψ−p↓φ
† + ψp

†
↑ψ

†
−p↓

φ) (5.5)

and

Hφ = (2ν − µB)φ†φ (5.6)

Next we calculate the commutation relations in order to arrive at the equations of mo-

tion. This is in accordance with the Ehrenfest Theorem, which relates the time derivative

of the expectation value for a quantum mechanical operator to the commutator of that

operator with the Hamiltonian of the system.

[ψp↑, HBCS] = g(−
∑

p′

〈ψp′

†
↑ψ

†
−p′

↓
〉ψ−p↓ψp↑ψp↑

−
∑

p′

〈ψp′

†
↑ψ

†
−p′

↓
〉ψ−p↓ψp↑ψp↑

+ψp↑ψp
†
↑ψ

†
−p↓

∑

p′

〈ψ−p′

↓ψp′

↑〉)

−ψp
†
↑ψ

†
−p↓

ψp↑

∑

p′

〈ψ−p′

↓ψp′

↑〉)

= gψ†
−p↓

∑

p

〈ψ−p↓ψp↑〉

(5.7)
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[ψp↑, Hkin] = ǫp(ψp↑ψp
†
↑ψp↑ − ψp

†
↑ψp↑ψp↑)

= ǫpψp↑

(5.8)

[ψp↑, Hφψ] = g2[ψp↑, ψp
†
↑ψ

†
−p↓

φ]

= g2ψ
†
−p↓

φ
(5.9)

[φ,H] = g2

∑

p

〈ψ−p↓ψp↑〉 + (2ν − µB)φ (5.10)

Heisenberg operators are introduced as :

ψH↑(p, t) = eiHt/h̄ψp↑e
−iHt/h̄

ψH
†
↓(−p, t) = eiHt/h̄ψ−p

†
↓e

−iHt/h̄

The equations of motion are :

ih̄
∂

∂t
ψH↑(p, t) = eiHt/h̄[ψp↑, H]e−iHt/h̄

ih̄
∂

∂t
ψH

†
↓(−p, t) = eiHt/h̄[ψ−p

†
↓, H]e−iHt/h̄

(5.11)

ih̄
∂ψH↑

∂t
= ǫpψH↑ + g

∑

p

〈ψp↑ψ−p↓〉ψH↓
† + g2ψH↓

†φ (5.12)

ih̄
∂ψH↓

†

∂t
= ǫpψH↓

† + g
∑

p

〈ψp↓
†ψ−p↑

†〉ψH↑ + g2ψH↑φ
† (5.13)

5.2 Green’s Functions and the Effective Coupling

We define single particle Green’s functions in the momentum space.

G(pt,p′t′) = −〈[ψH↑(pt)ψH↑
†(p′t′)]〉 (5.14)
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F(pt,p′t′) = −〈[ψH↑(pt)ψH↓(p
′t′)]〉 (5.15)

F †(pt,p′t′) = −〈[ψH
†
↓(pt)ψH↑(p

′t′)]〉 (5.16)

Therefore,

ih̄
∂

∂t
G(pt,p′t′) =

−ih̄δ(t − t′)〈ψH↑(pt)ψH↑
†(p′t′)〉 − 〈T [ih̄

∂ψH↑(pt)

∂τ
ψH↑

†(p′t′)]〉

= −ih̄δ(p − p′)δ(t − t′) + ǫp〈Tr[ψH↓
†ψH↑

†]〉 + g〈ψp↑ψ-p↓〉〈Tr[ψH↓
†ψH↑

†]〉 + g2φ〈Tr[ψH↓
†ψH↑

†]〉
= −(ih̄(p − p′)δ(t − t′) + ǫpG(pt,p′t′) + geff〈ψp↑ψ-p↓〉F †(pt,p′t′))

(5.17)

This leads to the usual gap equation [4], provided we replace the BCS-coupling g by

geff where

geff

∑

p

〈ψp↑ψ−p↓〉 = g
∑

p

〈ψp↑ψ−p↓〉 + g2φ (5.18)
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5.3 Dynamics of Condensate Order Parameter and Pair Wave-

function

Let us now define the pair wavefunction.

Op = 〈ψH↑ψH↓〉 (5.19)

ih̄
∂ψH↑

∂t
ψH↓ = ǫp〈ψH↑ψH↓〉 + gN2〈ψp↑ψ−p↓〉 + g2φN2

ih̄ψH↑

∂ψH↓

∂t
= ǫp〈ψH↑ψH↓〉 + g(1 − N1)〈ψp↑ψ−p↓〉 − g2φ(1 − N1)

(5.20)

〈ψH↑ψH↓〉 represents the expectation value of the pair wave function in the Heisenberg

picture while 〈ψp↑ψ−p↓〉 is the same quantity in the Schroedinger’s picture. Since these

are expectation values, they should not depend on the choice of the representation. So we

can denote both 〈ψH↑ψH↓〉 and 〈ψp↑ψ−p↓〉 by Op. Adding up the two parts of equation

5.20),

ih̄
∂Op

∂t
= 2ǫpOp + g

∑

p

Op(N2 + N1 − 1) + g2φ(N2 + N1 − 1) (5.21)

Here N1 = 〈ψH
†
↑ψH↑〉

and

N2 = 〈ψH
†
↓ψH↓〉

or,

ih̄
∂Op

∂t
= 2ǫpOp + g(Np − 1)

∑

p

Op + g2φ(Np − 1) (5.22)

Here Np = N1 + N2, i.e., the total population corresponding to a particular momentum

p.

When both the pairing states are occupied, (e.g, in region of BCS pairing, Np = 2)

ih̄
∂Op

∂t
= 2ǫpOp + g

∑

p

Op + g2φ (5.23)
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As for the evolution of φ

ih̄
∂φ

∂t
= g2

∑

p

Op + (2ν − µB)φ (5.24)

A quick comparison with the results obtained by Andreev et al. [2] and Burnett et.

al [3] shows that our equations are linearized versions of the evolution equations appeared

in [2,3]. It is this linearized approximation which is the relevant part for our calculation.

The nonlinear terms are essential only for dynamics following a sudden quench.

5.4 System in Equilibrium:

The first test of the new theory is that, whether we can reproduce previously established

results as special cases of the new formalism. So we try to go back to the static case using

these dynamical equations.

In the static case,

Let the condensate order parameter be a constant, i.e.,
∂φ

∂t
= 0

From Equation (5.24),

g2

∑

p

Op = −(2ν − µB)φ (5.25)

but from equation (5.18),

geff

∑

p

Op = g
∑

p

Op + g2φ (5.26)

Therefore,

geff = g − g2
2

(2ν − µB)
(5.27)

If the fermion-fermion four point interaction is an attractive one (which is indeed the

case for a BCS superfluid), then writing g = −|g1|, we arrive at
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geff = g1 +
g2
2

(2ν − µB)
(5.28)

The effective interaction geff is also taken in the attractive sense. And the result

matches with Equation (3.8) in Chapter 3. So, we are able to reproduce the results in

chapter 3 by writing down the equations of motion and putting
∂φ

∂t
= 0 therein. In

Chapter 3, we followed a variational mean field approach, and had to use a trial form of

the ground state of the system. This time, howver, there are no such trial solutions. The

Ehrenfest theorem and the commutation relations have directly landed us here, and this

treatment is certainly more general.

5.5 System out of Equilibrium : Frequencies of Oscillation

Let, Õp be the fluctuation in Op, and φ̃ be the fluctuation in φ,

ih̄
∂Õp

∂t
= 2ǫp Õp + g

∑

p

Õp + g2φ̃ (5.29)

ih̄
∂φ̃

∂t
= g2

∑

p

Õp + (2ν − µB)φ̃ (5.30)

We take the respective Fourier transforms

φ(t) =

∫
φ̃(ω)eiωtdω

Op(t) =

∫
Õp(ω)eiωtdω

(5.31)

Putting these in Equations (5.29) and (5.30),

iω.ih̄Op(ω) = 2ǫpOp(ω) + g
∑

p

Op(ω) + g2φ(ω)

Op(ω)(2ǫp + ωh̄) = −(g2φ(ω) + g
∑

p

Op(ω))

Op(ω) = −
g2φ(ω) + g

∑
p Op(ω)

2ǫp + h̄ω

(5.32)
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So far, the treatment has been general, and the population imbalance has not been

taken into account. Now we come to the particular situation where there are two different

species of Fermions, or, two hyperfine states of the same atom (for simplicity, we have

used ↑ and ↓ to denote them): but one has a larger population than the other. In the

momentum picture, this corresponds to a specific geometry.

The natural choice is that of a three-shell structure [5–8] : a core comprising paired

fermions, an annular region hosting the excess unpaired ones, and an outermost shell

consisting of the rest of the paired fermions. Another probable option is a two-shell

structure: one consisting of the paired atoms, and another occupied by the remaining

unpaired fermions. These two topologically distinct cases have been discussed in depth

in [9–11]. Further, it is shown that [12] a population-imbalanced Breached Pair state is

stable only for a two-tier configuration.

We shall discuss the dynamics of these two structures in details, and show how one

differs from the other.

5.6 Dynamics of the Two-shell Structure

p1

p2

Unpaired

Paired

Figure 5.1: Two-shell structure for population-imbalanced fermionic system
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In Fig. 5.1, the shell structure in momentum space is depicted. The unpaired major-

ity fermions stay in the core region, which is a normal fluid. The pair superfluid forms the

outer shell, from radii p1 to p2, where p1 and p2 mark the momenta boundaries between

which the fermions form BCS-like pairs.

Experimental results obtained by the Ketterle group at MIT [13] is indicative of this

structure. They studied a strongly interacting Fermi gas with imbalanced populations,

and observed a superfluid region surrounded by a normal gas in the form of a shell struc-

ture in the coordinate space. Now, the configuration we described above (unpaired inner

region and paired outer shell), when mapped into real space via a Fourier Transformation

shows a high density of superfluid in the centre ( i.e., the picture obtained by Shin et

al. [13]), provided the population imbalance is not too high. Our Fourier space calcula-

tion shown that this holds till p2 > 1.26p1. Now, p1

p2

is the measure of the population

imbalance of the system, and indeed from the experimental results obtained by Shin et

al., this core and shell structure survives upto a population imbalance of 75 percent (i.e.,

when p2 > 1.05p1). So our calculation matches with their findings within an error margin

of 20 percent.

Thus, Op(ω) has to be summed over the superfluid region, i.e., over all p from p1 to

p2.

∑

p

Op(ω) = −g2φ

∫ p2

p1

p2dp

(ǫp + h̄ω)
− g

∑

p

Op(ω)

∫ p2

p1

p2dp

(ǫp + h̄ω)
(5.33)

The constant that comes with the density of states is absorbed in g2 and g. Let pF be

the Fermi momentum of the majority species and M the mass of the atoms.

Let
∫ p2dp

(2ǫp + h̄ω)
= u(p)
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Now,

2ǫp = 2(
p2

2M
− pF

2

2M
)

= ((pF + (p − pF ))2 − p2
F )/M

2
pF

M
(p − pF )

=
2pF p

M
− 2p2

F

M

(5.34)

Therefore,

2ǫp + ωh̄ = ap + b

where a = 2pF

M
, b = −2p2

F

M
+ ωh̄

∫
p2dp

ap + b

=
1

a

∫
p2dp

p + b/a

=
1

a

∫
((p + b

a
)2 − b2

a2 − 2p b
a
)dp

p + b/a

=
1

a
[

∫
(p +

b

a
)d(p +

b

a
) − b2

a2

∫
d(p + b

a
)

(p + b
a
)
− 2b

a

∫
pd((p + b

a
)

(p + b
a
)

]

=
1

a
[
(p + b

a
)2

2
− b2

a2
ln(p +

b

a
) − 2b

a
(

∫
(p + b

a
)d(p + b

a
)

(p + b
a
)

− b

a

∫
d(p + b

a
)

(p + b
a
)

)]

=
1

a
[
(p + b

a
)2

2
− b2

a2
ln(p +

b

a
) − 2b

a
(p +

b

a
) +

2b2

a2
ln(p +

b

a
)]

=
1

a
[
(p + b

a
)2

2
− 2b

a
(p +

b

a
) +

b2

a2
ln(p +

b

a
)]

= u(p)

(5.35)

Putting in the limits of integration, and using equation (5.31), we have
∑

p Op(ω) = −g2φ(ω) u(p2)−u(p1)
1+g(u(p2)−u(p1))

Putting back in Eq(5.30), we obtain

φ(ω)[(2ν − µB) + h̄ω − g2
2f(p1, p2, ω)] = 0, where f(p1, p2, ω) = u(p2)−u(p1)

1+g(u(p2)−u(p1))
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Which means, φ(ω) is zero if [(2ν − µB) + h̄ω − g2
2f(p1, p2, ω)] 6= 0. Therefore, in the

expansion of φ(t), only those φ(ω)s will survive for which

(2ν − µB) + h̄ω − g2
2f(p1, p2, ω) = 0 (5.36)

Therefore, φ(t) = φ1e
iω1t + φ2e

iω2t + ...

Here ω1, ω2 .. are the solutions of equation (5.36).

ωh̄ = g2
2(f(p2) − f(p1)) − (2ν − µB)

To find out whether there exists real values for ω, we take resort to graphical solutions.

We are only interested in real ω, because that would give us solutions in the form of

φ(t) = φeiωt, which denotes oscillation. If, on the other hand, we get imaginary solutions

for ω, then the solutions are of the form φ(t) = φeωt or φ(t) = φe−iωt. The first one

signifies an exponential growth in φ and is, therefore, unphysical. The second one marks

exponential decay, and its effect should be negligible as time increases. So we look out

for real solutions only.

From equation (5.36), the roots of ω are given by ω = f1(ω), where f1(ω) =

g2
2f(p1, p2, ω) − (2ν − µB) for a fixed set of p1 and p2. So we plot ω along X-axis and

both f1(ω) and ω along Y-axis. The blue lines (curved lines) correspond to f1(ω) and

the red lines (straight lines) mark ω. An intersection of the two lines correspond to a real

solution of the equation.

We scale all energies by the Fermi energy EF , and all momenta by the Fermi momen-

tum pF of the majority species. Therefore, in this convention, mass of each partcle gets

fixed at 0.5.

The BCS pairing takes place near the Fermi surface,within a cut-off region. For stan-

dard superconductors, this cut-off is h̄ωD, ωD being the Debye frequency. For Ultracold

atoms, the cut-off is
4

e2
EF =0.541EF [14]. Here e is the base of natural logarithms. Since

we have scaled all energies by EF , Fermi level corresponds to 1, and the lower cut-off is

at 1 − 0.541 = 0.459. Thus we have to choose p1 to lie between 0.459 and 1. We take p2

to be 1, the Fermi momentum.

Deep inside the Fermi surface the occupation number v2
p = 1, as shown in Fig. 5.6.

The dotted region marks the momentum span over which the unpaired fermions reside.
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Figure 5.2: Plot of occupation probability v2
p vs. momentum p for the two-shell structure

Although the outer shell actually extends to infinity, v2
p decreases sharply to zero following

a power law as a function of momentum p, and its magnitude becomes very small after

crossing the Fermi momentum. Therefore, instead of taking p upto infinity with this

form of vp, we can approximate the system by using a cut-off, and taking v2
p = 1 within

it. The justification of such an approximation is evident from the following example: if

the superfluid gap ∆ = 0.4 ( scaled by the Fermi energy) and vp
2 = 1

2
(1 − ǫp√

ǫ2p+∆2
) (as

in BCS theory) near the Fermi surface (say, from ǫ = 0.8 onwards), then
∫ ∞

0.8
g(ǫ)v2

pdǫ

becomes almost equal to
∫ 1

0.8
g(ǫ)dǫ where g(ǫ) is the density of states proportional to ǫ1/2.

Therefore, we can safely take the cut-off at the Fermi surface and v2
p = 1 within it.

Dependence on g2 when the Imbalance is Fixed:

We take p1 = 0.5, p2 = 1 and (2ν − µB) at 0.03. From Fig. 5.3, we see that when g2

is 0.1, there is only one point where f1(ω) and ω intersect one another, i.e., there exists

only one real solution for ω. A single solution exists for g2 = 1 as well. As this coupling

is increased slightly, at g2 = 1.7, there appears two such points, i.e., two real ω’s. Then,

as g2 goes to higher values, there are always two real solutions for ω .

So we can call g2 = 1.7 a critical coupling. If g2 is less than this coupling value, there

is only one real frequency of oscillation in φ̃(t). Beyond it, there are two frequencies.

When g2 is Fixed and the population imbalance is Varied:

Here, with p2 fixed at 1, (2ν − µB) at 0.03, we vary p1, which measures the amount

of imbalance, because it is up to a momentum p1 that the majority fermions remain
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Figure 5.3: Variation of f1(ω) with ω and solutions for f1(ω) = ω for different values of

g2

unpaired.

In Fig. 5.4 we observe that when the population imbalance is very low (p1 is 0.5,

i.e., a value slightly higher than the lower cut-off for pairing), the double frequency region

appears at g2 = 1.7. As the imbalance is increased gradually, the value of the critical

coupling decreases.

Thus, the fluctuation in φ can undergo oscillations with one or two frequencies, de-

pending on the value of g2.

In Case 1, φ̃(t) = φ1e
iω1t, or, φ(t) = φ0 + φ1e

iω1t

In Case 2, φ̃(t) = φ1e
iω1t + φ2e

iω2t, or, φ(t) = φ0 + φ1e
iω1t + φ2e

iω2t
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Figure 5.4: Variation of f1(ω) with ω and critical coupling for different values of popula-

tion imbalance.

5.7 Dynamics of the Three-shell Structure

Here the pairing takes place in two regions: from p1 to p2 and from p3 to p4. We take

p1 = .46 (the lower cut-off), p2 = .80, p3 = .84 and p4 = 1 (Fermi momentum). The

pairing is breached between p2 and p3 and this annular region hosts the unpaired fermions.

As before, we plot ω along X-axis and both f1(ω) and ω along Y-axis to get the real

solutions. In this case, f1(ω) = g2
2(f

′(p3, p4, ω)) + f ′(p1, p2, ω)) − (2ν − µB) for a definite

set of p1, p2, p3 and p4.

Fig. 5.6 shows the behaviour of occupation number v2
p. In this case, too, we can

approximate the system by considering the pairing to take place strictly within the cut-

off, and taking v2
p = 1. The dotted area represents the region containing excess majority

fermions.

We find, as before, that when the value of g2 is small, there is a single frequency of

oscillation. At some higher value of g2, there are two frequencies. And beyond a certain

coupling, the system oscillates with three frequencies.

Thus, for a particular system, whether the actual structure is a two-shell or a three-



Chapter 5. Dynamics as a probe of population imbalanced Fermionic System 96

p3 p1

p4

p2

Unpaired

Paired

Paired

Figure 5.5: Three-shell structure for population-imbalanced system

shell one can be found out by noting the maximum number of frequencies that the system

can generate : for a three-shell configuration it is three, and for a two-shell configuration

it is two.

5.8 Probing by an Oscillatory Drive

Let us add a small oscillatory component to the Feshbach magnetic field H, so that it

becomes H(1 + ǫeiΩt).Here ǫ << 1 . This is equivalent to replacing the factor (2ν − µB)

by (2ν − µB)(1 + ǫeiΩt) . We can make a perturbative expansions: φ̃(t) = φ0 + ǫφ′ and

Õp(t) = Op
0 + ǫOp

′

Where φ0 and Op
0 are the values of φ̃(t) and Õp(t) when there is no oscillatory part

in the coupling.

ih̄
∂(Op

0 + ǫOp
′)

∂t
= ǫp(Op

0 + ǫOp
′) + g

∑

p

(Op
0 + ǫOp

′) + g2(φ
0 + ǫφ′)

ih̄
∂(φ0 + ǫφ′)

∂t
= g2

∑

p

(Op
0 + ǫOp

′) + (2ν − µB)(1 + ǫeiΩt)(φ0 + ǫφ′)

(5.37)
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Figure 5.6: Plot of occupation probability v2
p vs. momentum p for the three-shell structure

Noting that φ0 = φ1e
iω1t, it follows that

ih̄
∂Op

′

∂t
= ǫpOp

′ + g
∑

p

Op
′ + g2φ

′

ih̄
∂φ′

∂t
= g2

∑

p

Op
′ + (2ν − µB)φ′ + (2ν − µB)φ1e

i(Ω+ω1)t

(5.38)

Taking Fourier Transforms as before, we find that φ′(ω) is non-zero only when ω =

ω1 + Ω and its value at that particular frequency is

φ′(ω) =
−(2ν − µB)φ12π

h̄(Ω + ω1) − g2
2f1(ω1 + Ω))

(5.39)

There is a resonance when the denominator becomes zero, i.e., h̄(Ω + ω1)− g2
2f1(ω1 +

Ω) = 0. But we know, h̄ω1 − g2
2f1(ω1) = 0. Subtracting,

h̄Ω + g2
2(f1(ω1) − f1(ω1 + Ω)) = 0 (5.40)

Since Ω is associated with the Feshbach resonance, by tuning the frequency of the time-

dependent magnetic field, we can control Ω. If, for a particular Ω the above equation is

satisfied, then we have a sharp resonance in the fluctuation is φ.

If, φ0 = φ1e
iω1t +φ2e

iω2t, following the same treatment, we can say that resonance will

take place when Ω satisfies either of the equations:
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Figure 5.7: Variation of f1(ω) with ω and solutions for f1(ω) = ω for different values of

g2 for the three-shell structure

h̄Ω + g2
2(f1(ω1) − f1(ω1 + Ω)) = 0

h̄Ω + g2
2(f1(ω2) − f1(ω2 + Ω)) = 0

(5.41)

It is obvious that Ω = 0 is a trivial solution of the equations. Again we take resort to

graphical solutions to find out whether non-zero real solutions exist for Ω.

If there are 3 frequencies of oscillation, there is one additional equation:

h̄Ω + g2
2(f1(ω3) − f1(ω3 + Ω)) = 0 (5.42)
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Let (f1(ω1) − f1(ω + Ω)) = f ′(Ω)

We plot Ω along X-axis and both f ′(Ω) and Ω along Y-axis. The blue lines(curved

lines) correspond to f ′(Ω) and the red lines (straight lines) mark Ω. As before, the

solutions correspond to their intersections.
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Figure 5.8: Variation of f ′(Ω) with Ω and solutions for f ′(Ω) = Ω for different values of

g2 and corresponding ω.

Experimentally one can detect the oscillation frequencies. We have already noted that

if an oscillatory component is added to the Feshbach coupling, and its frequency is tuned,

then at a particular frequency there is a sharp resonance in the condensate fraction. We

propose an algorithm for determining the imbalance: for a two-shell configuration choose

a p1 (p2 is set to 1 because at zero temperature it is the Fermi momentum of the majority

species, by which all momenta are scaled) so that the numerically computed oscillation
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frequencies match with those obtained in the experiment. Then use those frequencies and

the external resonant frequency to calculate p1. If this doesn’t match with the initial p1,

use the new values as input for the first step. Iterating the process a number of times,

one should arrive at the actual value of the breaching point, or the point which marks the

separation of the two phases in the momentum space.

The same algorithm can be applied to the three-shell configuration as well, but then

one has to provide initial estimates for p2 and p3 separately. Whether the structure is a

two-shell or a three-shell one can be found by noting the number of maximum frequencies

that the system can generate.

5.9 Summary and Discussion

Here we have studied the natural dynamics of a population-imbalanced two-species fermionic

system. The system is capable of making a BCS-BEC crossover, and form Bose condensate

via Feshbach resonance. We have shown that the fluctuation in the condensate fraction

displays a periodic or a quasi periodic oscillation, depending on the value of the Feshbach

coupling. There is a critical coupling below which the oscillation is always periodic, and

its value depends on the population imbalance. When the coupling exceeds this critical

value, two frequencies of oscillations appear in the system.

We have shown that if there is an additional oscillatory component is present in the

Feshbach term, one can achieve a sharp resonance in the condensate fraction by tuning

the frequency of the external magnetic field. The breached momentum region can be

calculated from this frequency value. Thus it proves to be an indirect method of experi-

mentally determining the momentum space structure of the imbalanced Fermi system. If

we remember how difficult it is to detect these novel phases experimentally, and how much

problematic it would be to resolve their momentum space structures, we can understand

the importance and the promise such an indirect method holds.

This treatment can be extended to detect more complicated structures in the momen-

tum space, too. In case the bosons have a non-zero momentum pairing as in (Eq. 5.1),

the same method can be used to study the system. Only, the sum of the squares of the

additional momenta will enter the denominator 2ǫp + h̄ω in the expression of
∑

p Op(ω)
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(Eq. 5.33), and that will result in a shift in the position of the resonant frequencies. The

FFLO state, which arises due do finite momentum pairing thus can also get reflected in

a similar dynamical study.
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Chapter 6

Conclusions and Future prospects

In this Chapter, we shall summarize this thesis by highlighting our important findings

and also discuss the future prospects of our study.

Our aim was to investigate some of the the static and dynamic properties of ultracold

atom systems, in the light of “pairing” and “condensation” phenomena in cold quantum

gases. Here the simplest form of “pairing” was the Cooper pairing as in the BCS theory.

We also considered exotic pairing states that can take place in population-imbalanced

systems. By “condensation” we mostly implied the Bose Einstein condensation (BEC).

The fact that the cold atom system can shuttle between BCS end and BEC as the coupling

is varied played a key role in our research.

In the following section, we briefly describe our journey: the questions we addressed,

the methods that were employed and the results obtained.

6.1 Concluding Remarks

In Chapter 1 we have presented an overview of the novel features of ultracold quantum

gases. We have given an account of the existing theories and experimental achievements in

this field, that served as the motivation for our work. We have discussed BCS-superfluidity

and Bose-Einstein Condensation (BEC), and shown how they are connected via a single

phenomenon : “BCS-BEC Crossover”. We have also talked about population-imbalanced

fermions and the novel pairing states that can arise from such an imbalance. The impor-

tance of dynamical studies of ultracold atom systems was underlined as well.
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Chapter 2 concerned the effect of three-body scattering processes on BCS-BEC Crossover.

We started with a two-species ultracold Fermi gas, where there are either two different

fermionic atoms (e.g., 6Li and 40K), or two hyperfine states of the same fermion (e.g.,

states |F = 1/2,mF = 1/2〉 and |F = 1/2,mF = −1/2〉 of 6Li atoms). The fermions pair

up in the standard BCS fashion. Now, if the coupling between the fermions is increased

via the Feshbach magnetic field, the Cooper-paired fermions tend to come closer in the

real space and start to form bosonic molecules. Our assumption was that, in addition

to the fermion-fermion two-body interaction, there is a three-body interaction as well

in the form of boson-Cooper pair scattering. This interaction becomes important near

resonance as all cooper pairs do not get converted into tightly bound molecules at the

same time : Cooper pairs and molecules can coexist at that point. Our motivation was

to find out if this additional interaction can bring any qualitative change in the crossover

picture. We have shown that if the newly formed molecules scatter the fermion-fermion

pairs, a variational mean-field calculation leads to multiple crossover routes, including the

usual one. The system now has the option to follow either of these paths. We plotted

the energy surface to find out which amongst these crossover routes corresponds to the

minimum of energy and hence is more probable. We observed that if the two-body inter-

action is attractive, then irrespective of whether the three-body interaction is attractive

or repulsive, the crossover process becomes a non-reversible one. Starting from a stable

BEC system the BCS state can be reached via Feshbach resonance, but the path cannot

be reversed : a start from the BCS side can only end up in an alternative route that

represents metastable BEC state (and not the stable one).

In Chapter 3, we discuss exotic superfluid states in a population-imbalanced two-

species ultracold Fermi gas. The thrust is on the “Breached Pair state” or “Sarma Phase”,

a special kind of novel superfluid state that accommodates the excess unpaired fermions in

a region where pairing is “breached”. Thus, there are both gapped and gapless zones in the

momentum-space. It is known that for weak coupling BCS theory, this gapless breached

pair state marks the maximum of the thermodynamic potential, and thus, cannot be the

stable ground state of the system. This is the well-known Sarma instability. We wanted

to find out whether there is a region of stability if the entire BCS-BEC crossover path

is considered, and to identify the conditions for stability. From the criterion that the
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superfluid density must be positive, we showed that the breached state is stable only

when the chemical potentials of the two species bear opposite signs. Solving the gap

equation and the number equation, we arrived at analytical expression for the Feshbach

magnetic field that serve as the boundary values for the stable region. We used data

obtained in experiments with population-mismatched fermions to obtain the exact values

of the magnetic field for a typical experiment with unequal mixture of two spin states

of 6Li atoms. The conclusion was : the breached pair state can become stable only in a

narrow window near the resonance on the BEC side.

The first part of Chapter 4 focuses on sudden quench Dynamics in a BCS-paired

ultracold atom system. We started with a superfluid in the BCS regime. The four-point

coupling can be tuned via Feshbach resonance. The coupling is abruptly changed, and

then the subsequent evolution is controlled by the final Hamiltonian which also a BCS one.

We observed that quantities characteristic of this quench like the fidelity susceptibility

and defect density follow power law equations when plotted against the change in the

coupling amplitude. In the remaining part of this chapter we addressed periodic quench,

as the chemical potential has a sinusoidal time dependent part. The condition for self-

consistency of the gap parameter invokes a nonlinearity in the system. We studied the

evolution of the effective magnetization and defect density. It was found that nonlinear

coupling results in a rapid decay of the response to a stabilized well-defined mean value

with very small oscillations around that point.

In Chapter 5, we reported our work on the natural dynamics of a two-species fermionic

system that is capable of undergoing BCS-BEC Crossover. The motivation was to probe

whether the dynamical studies can be used to probe momentum-space structures in the

population-imbalanced Fermi system. We found that the oscillation of the condensate

fraction is periodic or quasi periodic, depending on the value of Feshbach coupling.There

is a critical coupling below which the oscillation is always periodic, and its value depends

on the population imbalance. Moreover, these frequencies of oscillations are found to

be sensitive to the nature of pairing in the momentum space. We proposed that this

method can be employed to map the momentum-space structure of the novel pairing states

characteristic of population-imbalanced systems. In our view, this is a really important

approach, since it is extremely difficult to detect the exotic pairing states like the FFLO
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and Breached Pair state experimentally. The ability to resolve their momentum space

structures, therefore, is beyond the scope of present-day experiments. We felt that an

indirect experimental method can be of great significance, and our dynamical studies

suggested a technique for the same. We showed that if there is an additional oscillatory

component present in the Feshbach magnetic field, one can achieve a sharp resonance

in the condensate fraction by tuning its frequency. The boundary values of the breached

momentum region, or the region that hosts the excess unpaired fermions, can be calculated

from this frequency value. Thus it proves to be an indirect method of experimental

determination of the momentum space structure of the imbalanced Fermi gas.

6.2 Future Directions

We have addressed some of the important issues in the context of ultracold atom gases.

The results we obtained also open up newer possibilities. We plan to look at the following

problems in future:

• To extend our work on dynamical studies to cover Fermi systems with a finite-

momentum pairing, i.e, the FFLO state, and to probe whether the value of the

pairing momenta can be deduced from the oscillation in the condensate fraction.

• To study BCS-BEC crossover in the presence of disorder, and find out whether

disorder itself can be the driving factor that causes the crossover if three-body

interactions are considered.

• To link the study of periodic quench with two-level systems and find out how the

Landau Zener probability of transition is affected by the periodic drive.

• To look for competing instabilities in ultracold atom systems, e.g the pairing and

magnetic instability, using dynamical studies.

The study of ultracold atom systems is important not only from the perspective of cold

atoms, but from other branches of physics as well. The techniques and concepts which we

came across while studying ultracold atoms have greater applicability : they can be used



to explore untrodden areas in nuclear physics and condensed matter physics. Ultacold

atom physics is an useful test bed for studying interacting many-body systems, because

the unparallelled tunability of system parameters in cold atom systems allows one to

experimentally simulate standard condensed matter Hamiltonians. The knowledge from

the study of cold quantum gases can be applied to understand superfluidity in nuclear

matter, too. We foresee some of our works to be directed along condensed matter physics

and nuclear physics, using the fundamental ideas of “pairing” and “condensation”.


